首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three novel copper(II) complex [Cu2(bpa)(μ‐PhCO2)](ClO4)2 ( 1 ), [Cu2(bpa) (μ‐pyz)](ClO4)2 ( 2 ), and [Cu(Hbpa)](ClO4)2·2CH3CN ( 3 ) have been synthesized by the reaction of Hbpa with Cu(ClO4)2·6H2O in the presence and absence of exogenous ligands (where Hbpa = N, N'‐bis(picolinidene‐N‐oxide)‐2‐hydroxy‐1, 3‐diamino‐propane). Molecular structures of these compounds have been elucidated by single crystal X‐ray diffraction. 1 and 2 are both binuclear complexes in which two copper atoms are linked by the endogenous alkoxide oxygen and the exogenous benzoate and pyrazolate ligands, respectively. 3 consists of a one‐dimensional polymeric structure, in which Hbpa functions as a bridging mode.  相似文献   

2.
The catecholase activity of the dicopper(II) complexes [Cu2(L1)(μ‐OCH3)(NCCH3)2](PF6)2·H2O·CH3CN ( 1 ), [Cu2(L2)(μ‐OH)(MeOH)(NCCH3)](BF4)2 ( 2 ), [Cu2(L3)(μ‐OMe)(NCCH3)2](BF4)2·2CH3CN·H2O ( 3 ), [Cu2(L2)(μ‐OAc)2]BF4·H2O ( 4 ), [Cu2(L4)(μ‐OAc)2]ClO4 ( 5 ) and [Cu2(L5)(μ‐OMe)(NCCH3)3(OH2)](ClO4)2·2CH3OH·CH3CN ( 6 ) consisting of varying para‐substituted phenol ligands HL1 = 4‐trifluoromethyl‐2,6‐bis((4‐methylpiperazin‐1‐yl)methyl)phenol, HL2 = 4‐bromo‐2,6‐bis((4‐methyl‐1,4‐diazepan‐1‐yl)methyl)phenol, HL3 = 4‐bromo‐2‐((4‐methyl‐1,4‐diazepan‐1‐yl)methyl)‐6‐((4‐methylpiperazin‐1‐yl)methyl)phenol, HL4 = 2,6‐bis((4‐methylpiperazin‐1‐yl)methyl)‐4‐nitrophenol and HL5 = 4‐tert‐butyl‐2,6‐bis((4‐methylpiperazin‐1‐yl)methyl)phenol was studied. The main difference within the six complexes lies in the individual copper–copper separation that is enforced by the chelating side arms of the phenolate ligand entity and more importantly in the exogenous bridging solvent, hydroxide, methanolate or acetate ions. The distance between the copper cores varies from 2.94Å in 1 to 3.29Å in 5 . The catalytic activity of the complexes 1 – 6 towards the oxidation of 3,5‐di‐tert‐butylcatechol was determined spectrophotometrically by monitoring the increase of the 3,5–di‐tert‐butylquinone characteristic absorption band at about 400 nm over time saturated with O2. The complexes are able to oxidize the substrate 3,5‐di‐tert‐butylcatechol to the corresponding o‐quinone with distinct catalytic activity (kcat between 92 h?1 and 189 h?1), with an order of decreasing activity 6 > 5 > 1 , 2 , 4 ≥ 3 . A kinetic treatment of the data based on the Michaelis‐Menten approach was applied. A correlation of the catecholase activities with the variation of the para‐ substituents as well as other effects resulting from the copper core distances is discussed. [Cu2(L5)(μ‐OMe)(NCCH3)3(OH)2](ClO4)2·2CH3OH·CH3CN ( 6 ) exhibited the highest activity of the six complexes as a result of its high turnover rate.  相似文献   

3.
Three dinuclear copper(II) complexes, [Cu2(L1)2(μ-ox)](ClO4)2?2(CH3CN), [Cu2(L2)2(μ-ox)](ClO4)2?H2O, and [Cu2(L3)2(μ-ox)](ClO4)2 where ox = oxalato; L = N,N-dimethyl,N′-benzylethane-1,2-diamine, L1, N,N-diethyl,N′-benzylethane-1,2-diamine, L2, N,N-diisoprophyl,N′-benzylethane-1,2-diamine, L3, were prepared and characterized by elemental analyses, spectral (IR, UV–Vis) data and molar conductance measurements. The crystal structures of [Cu2(L1)2(μ-ox)](ClO4)2?2(CH3CN) and [Cu2(L3)2(μ-ox)](ClO4)2 have been determined by single-crystal X-ray analysis. Solvatochromic behaviors were investigated in various solvents, showing positive solvatochromism. The effect of steric hindrance around the copper ion imposed by N-alkyl groups of the diamine chelates on the solvatochromism property of the complexes is discussed. Solvatochromism was also studied with different solvent parameter models using stepwise multiple linear regression method.  相似文献   

4.
A dicopper(II) complex can be covalently linked to palmitate/palmitoyl-oleoyl-phosphatidylcholine (PA/POPC) liposomes using the following one-pot strategy: preformed [Cu2(bpbp)(PA)](ClO4)2 (bpbp = 2,6-bis((N,N′-bis(2-picolyl)amino)methyl)-4-tertbutylphenolato) was incorporated into POPC liposomes with a loading of up to 10 mol%. Despite its shape and charge, the decoration of PA/POPC liposomes with {Cu2(bpbp)}3+ did not disrupt the liposome structure; however, the mean liposome diameter increased from about 130 nm (0 mol% dicopper complex) to about 150 nm (10 mol% dicopper complex). Single-crystal X-ray structures furnish ‘snapshots’ of the pH-dependent solution state derivatives of {Cu2(bpbp)}3+, and model the structure of the [Cu2(bpbp)(PA)]2+ head group at the surface of the liposomes. An impressive plasticity in the intramolecular non-bonded Cu….Cu distance for these ions, ranging from 3 to 4 Å, in [Cu2(bpbp)OH]2+, [Cu2(bpbp)(OAc)(H2O)]2+ and [Cu2(bpbp)(H2O)2]3+ allows for their utility as labile reagents in water. Remarkably, the flexible dicopper site is selective for a single carboxylate ligand, so that [Cu2(bpbp)(PA)]2+ is favoured even in the presence of other chemically similar oxoanions, such as CO32 ? , HCO3, NO3, ClO4, ReO4 and CF3SO3.  相似文献   

5.
Mixed ligand dinuclear copper(II) complexes of the general formula [Cu2(Rdtc)tpmc)](ClO4)3 with octaazamacrocyclic ligand tpmc and four different heterocyclic dithiocarbamate ligands Rdtc?, as well as the complexes [Cu2(tpmc)](ClO4)4 and [Cu(tpmc)](ClO4)2?2H2O were studied in aqueous NaClO4 and HClO4 solutions by cyclic voltammetry on glassy carbon electrode. The electrochemical properties of the ligands and Cu(II) complexes were correlated with their electronic structure. Conductometric experiments showed different stoichiometry in complexation of tpmc with Cu2+ ions and transport of ions in acetonitrile and in aqueous media. These studies clarified the application of this macrocyclic ligand as ionophore in a PVC membrane copper(II) selective electrode and contributed elucidation of its sensor properties.  相似文献   

6.
A binuclear copper(II) complex, [Cu2(μ 1,3-N3)(N3)(pmp)2(ClO4)]ClO4 (pmp = 2-((pyridin-2-yl) methoxy)-1,10-phenanthroline), was synthesized with a single azide as end-to-end bridge ligand, and pmp and perchlorate as ligands. In the crystal, Cu(II) is in a distorted square pyramidal geometry, and a single azide bridges equatorial-axial linking two Cu(II) ions with separation of 5.851 Å. There are π?π stacking interactions involving 1,10-phenanthroline rings. The variable-temperature (2–300 K) magnetic susceptibilities were analyzed using a binuclear Cu(II) magnetic formula and it indicates that there is a very weak ferromagnetic coupling with 2J = 2.82 cm?1.  相似文献   

7.
Reaction of the Schiff base, 1-(4-methylimidazol-5-yl) phenylhydrazonopropane-2-one oxime (LH), with copper(II) perchlorate hexahydrate and copper(II) nitrate trihydrate in a 1 : 1 M proportion in methanol affords [Cu2L2(H2O)(ClO4)](ClO4) (1) and [Cu2L2(H2O)2](NO3)2] (2) in moderate yields. Both 1 and 2 have been characterized by elemental analysis, ESI-MS, FT-IR, UV–vis absorption spectroscopy, EPR, electric conductivity, and magnetic susceptibility measurements. The X-ray crystal structures of 1·CH3COCH3 and 2 have been determined. Both compounds are dinuclear copper(II) complexes, with each copper μ2-bridged by two oxime ligands in a μ2-η1,η2 fashion. Variable temperature magnetic studies on 1 and 2 show that both compounds are dominated by an antiferromagnetic coupling through the oxime bridges.  相似文献   

8.
The reaction of [Cu(L)](ClO4)2 · H2O (L=1,3,10,12,16,19-hexaazatetracyclo[17,3,1,112.16,04.9]tetracosane) with NaN3 and Na2tp yields mononuclear and dinuclear copper(II) complexes, [Cu(L)(N3)](ClO4) (1) and [Cu(L)(μ-tp)](ClO4) · 2H2O (2). These complexes have been characterized by X-ray crystallography, electronic absorption, cyclic voltammetry and magnetic susceptibility. The crystal structure of (1) shows that the copper(II) ion has a distorted square-pyramidal geometry with the two secondary and two tertiary amines of the macrocycle and one nitrogen atom from the azide group coordinating the axial position. The copper(II) ions in (2) are bridged by the terephthalate anion to form a dinuclear complex, in which each copper(II) ion reveals a distorted square-pyramid with four nitrogen atoms of the macrocycle and the oxygen atom of bridging tp ligand. Cyclic voltammetry of the complexes gives two one-electron waves corresponding to CuII/CuIII and CuII/CuI processes. The magnetic susceptibility measurement for (2) exhibits a weak antiferromagnetic interaction between copper(II) centers with a 2J value of −2.21 cm−1 (H = −2JΣS1 · S2). The electronic spectra and electrochemical behavior of the complexes are significantly affected by the nature of the organic ligands.  相似文献   

9.
The polynuclear copper(II) complex [Cu2(Hdpa)2(μ‐ClDHBQ)(ClO4)2]n, 1 is bridged by ClDHBQ?2 (2,5‐dichloro‐3,6‐dihydroxy‐1,4‐benzoquinone dianionic) and 2,2′‐dipyridylamine (Hdpa). In the axial position, Cu is connected with the oxygen atom of ClO. The perchlorate anion may be envisaged as a monodentate O‐bound ligand. Through the bond bridge of O–Cu … O–Cl, the binuclear compound [Cu2(Hdpa)2(μ‐ClDHBQ)(ClO4)2] is strung together into a long chain compound. Tetrachlorocatechol underwent partial oxidation/hydrolysis/dechlorination processes to produce ClDHBQ?2. The other mononuclear complex [Cu(Hdpa)(TeCQ)](DMF), 2 , in which tetrachloroquinone (TeCQ) was produced by oxidation of tetrachlorocatechol (TeCC), therefore complex 2 is in the quinone form. The magnetic susceptibility measurements show antiferromagnetic coupling with J = ?11.9 cm?1, θ = 2.6 K, and g = 2.05 for complex 1. Complex 2 exhibits the typical paramagnetic behavior of s = 1/2.  相似文献   

10.
CO2 fixation and transformation by metal complexes continuously receive attention from the viewpoint of carbon resources and environmental concerns. We found that the dinuclear copper(II) cryptate [Cu2L1](ClO4)4 ( 1 ; L1=N[(CH2)2NHCH2(m‐C6H4)CH2NH‐(CH2)2]3N) can easily take up atmospheric CO2 even under weakly acidic conditions at room temperature and convert it from bicarbonate into carbonate monoesters in alcohol solution. The compounds [Cu2L1O2COH)](ClO4)3 ( 2 ), [Cu2L1(μ‐O2COR)](ClO4)3 ( 3 : R=CH3; 4 : R=C2H5; 5 : R=C3H7; 6 : R=C4H9; 7 : R=C5H11; 8 : R=CH2CH2OH), [Cu2L1O2CCH3)](ClO4)3 ( 9 ), and [Cu2L1(OH2)(NO3)](NO3)3 ( 10 ) were characterized by IR spectroscopy and ESI‐MS. The crystal structures of 2 – 6 and 10 were studied by single‐crystal X‐ray diffraction analysis. On the basis of the crystal structures, solution studies, and DFT calculations, a possible mechanism for CO2 fixation and transformation is given.  相似文献   

11.
Three Cu(II) complexes, Cu2(bpy)(H2O)(Clma)2 (1), Cu2(bpe)(H2O)2(Clma)2 (2), and Cu(bpp)(Clma) (3), were synthesized (HClma = (R)-2-Chloromandelic acid, bpy?=?4,4′-dipyridine, bpe?=?1,2-di(4-pyridyl)ethylene, bpp?=?1,3-di(4-pyridyl)propane). Complexes 1, 2, and 3 are constructed from 1-D coordination arrays generated from Cu2(H2O)(Clma)2, Cu2(H2O)2(Clma)2, and Cu2(Clma)2 moieties and linked through bpy, bpe, and bpp co-ligands, respectively. 1 and 2 are assembled into 3-D supramolecular networks via O–H?O hydrogen bonds with topology of (63)(69·8) and (412·63), respectively, and 3 is assembled into a 3-D architecture through C–H?O hydrogen bonds with topology of (43·63)(43)(44·65·8)(46·66·83). Compounds 1, 2, and 3 crystallized in acentric space groups P21, P1, and P21, which exhibit significant ferroelectricity (remnant polarization Pr?=?0.008?μC?cm?2, coercive field Ec?=?21.4?kV?cm?1, the spontaneous saturation polarization Ps?=?0.167?μC?cm?2 for 1, Pr?=?0.183?μC?cm?2, Ec?=?1.69?kV?cm?1, and Ps?=?0.021 μC?cm?2 for 3). Results from infrared and thermal analyses are also discussed.  相似文献   

12.
The reaction of 2-hydroxy-6-methylpyridine (HL, 1) with nonanuclear nickel trimethyl-acetate Ni9(OH)6(OOCCMe3)12(HOOCCMe3)4 (2) in MeCN with a ratio M: L = 1: 1 under mild conditions (20 °C, 15 min) led to degradation of the metal core to form the hexanuclear complex (HL)22-HL)2Ni63-OH)22-H2O)2(μ-OOCCMe3)8(η-OOCCMe3)2 (3). Further heating of 3 in acetonitrile at 80 °C for 4 h afforded the (HL)Ni63-OH)(μ32-L)3(μ,η2-L)(μ3-L)(μ 3-OOCCMe3)(μ-OOCCMe3)42-OOCCMe3) complex. The reaction with the use of a 2: 1 THF-EtOH mixture instead of acetonitrile at 50 °C gave the decanuclear complex [Ni103-O)23-OH)4(μ-OOCCMe3)632-L)6(EtOH)6](H2O)2, which is also produced from compounds 1 and 2 in ethanol. The structures of the resulting complexes were established by X-ray diffraction. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 908–917, May, 2007.  相似文献   

13.
Abstract

5′-deoxyadenosine (LH) complexes with divalent 3d metal perchlorates were prepared by refluxing mixtures of LH and salt in triethylorthoformate-ethylacetate. With one exception (M = Co), adducts of the types M(LH)2(ClO4)2.3EtOH (M = Mn, Fe, Ni, Zn) and Cu(LH)3(ClO4)2.EtOH were obtained. Ethanol is introduced to the system by hydrolysis of triethylorthoformate during the dehydration of the metal salts. Co(II) perchlorate yielded a complex involving both neutral LH and monoanionic L? ligands, i. e., Co2(LH)L2(ClO4)2.4EtOH. An analogous Cu(II) complex, Cu2(LH)L2(ClO4)2.EtOH.3H2O, was also obtained by refluxing substantially more dilute suspensions of LH and Cu salt, relative to the standard preparative method employed. The new complexes were characrerized as dimers or linear polymers, involving bridging bidentate N1,N7-bound LH ligands between adjacent metal ions and coordination number six. The new adducts also involve terminal N7-bound LH and EtOH ligands and ionic perchlorate, and the Co and Cu complexes a chelating N6,N7-bound L? (monodeprotonation of the exocyclic NH2 group) per metal ion and terminal -OClO3 and ROH (R = Et or H) ligands.  相似文献   

14.

A new dinuclear nickel(II) compound, [Ni2(TPA)2(μ-C2O4)](H2O)0.75(ClO4)2 [TPA = tris(2-pyridylmethyl) amine], was synthesized and characterized by electronic spectroscopy and X-ray methods. In the complex, the oxalate ion acts as a bis-bidentate ligand and the two Ni(II) ions are six coordinated with a distorted octahedral structure. The complex crystallizes in the triclinic space group Pi , with a = 13.203(4), b = 16.574(5), c = 21.802(6) Å, α = 78.644(5), β = 80.299(5), γ = 72.446(5)°, V = 4429 Å3, Z = 2; R 1 = 0.0615, wR 2 = 0.1639. In the temperature range 4-300 K, magnetic measurements show that the exchange interaction between the two metal ions is antiferromagnetic with J = ? 18.74 cm?1, g = 2.10.  相似文献   

15.
The reaction of tricyanometallate precursor, (Bu4N)[(pzTp)Fe(CN)3] with Cu(ClO4)2·6H2O in the presence of the tetradentate ligand tris(2‐pyridylmethyl)amine (TPyA) afford the dinuclear compound fac‐{[FeIII(pzTp)(CN)2(μ‐CN)]CuII(TPA)}·Et2O·ClO4 ( 1 ) (pzTp = tetrakis(pyrazolyl)borate). The molecular structure was determined by single‐crystal X‐ray diffraction. In compound 1 , the FeIII ion is coordinated by three cyanide carbon atoms and three nitrogen atoms of pzTp anions. Whereas, the CuII ion is surrounded by one cyanide nitrogen atom and four nitrogen atoms from the TPyA ligand. Magnetic measurements indicate the intramolecular ferromagnetic coupling is observed for compound 1 , and it has S = 1 ground states.  相似文献   

16.
Two mononuclear copper(II) complexes [Cu(L)(NO2)](ClO4) (1) and [Cu(L)(MO4)]2· 5H2O (2) (L = 1,3,10, 12,16,19-hexaazatetracyclo[17,3,1,112.16,04.9]tetracosane) have been synthesized and their structures determined. Both compounds show a distorted square-pyramidal geometry with the two secondary and two tertiary amines of the macrocycle and one ligand coordinated at the axial position. Cyclic voltammetry of the complexes gives two one-electron waves corresponding to CuII/CuIII and CuII/CuI processes. The electronic spectra and electrochemical behavior of the complexes are significantly affected by the nature of the organic ligands.  相似文献   

17.
A five-coordinate copper complex with the tripod ligand tris(N-methylbenzimidazol-2-ylmethyl)amine (Mentb) and 4-hydroxycinnamate, with the composition [Cu(Mentb)(4-hydroxycinnamate)](ClO4)?·?0.5DMF, was synthesized and characterized by means of elemental analyses, electrical conductivities, thermal analyses, IR, and UV. The crystal structure of the copper complex has been determined by single-crystal X-ray diffraction, and shows that the CuII atom is bonded to a tris(N-methylbenzimidazol-2-ylmethyl)amine (Mentb) ligand and a 4-hydroxycinnamate through four N atoms and one O atom, giving a distorted trigonal-bipyramidal coordination geometry (τ?=?0.78), with approximate C3 molecular symmetry. Cyclic voltammograms of the copper complex indicate a quasireversible Cu+2/Cu+ couple. Electron spin resonance data confirm the trigonal–bipyramidal structure and indicate g ?<?g with a very small value of A (57?×?10?4?cm?1).  相似文献   

18.
Four new ternary complexes: [Cu(IP)(L-Val)(H2O)]ClO4·1.5H2O(1), [Cu(IP)(L-Leu)(H2O)]ClO4(2), [Cu(IP)(L-Tyr)(H2O)]ClO4·H2O(3) and [Cu(IP)(L-Trp)(H2O)]ClO4·1.5H2O(4) have been synthesized and character/zed by elementa/analysis, molar conductivity, infrared absorption spectroscopy, electronic absorption spectroscopy and cyclic voltammetry, where IP=imidazo[4,5-f][1,10] phenanthroline, L-Val=L-valinate, L-Leu=L-leucinate, L-Tyr=L-tyrosinate and L-Trp=L-tryptophanate. Complex 3 was structurally characterized by X-ray diffraction method, which crystallizes in orthorhornbic space group P21212 in a unit cell of dimensions a=3.0567(4) nm, b=0.74079(9) nm, c= 1.06198(13) nm, V=2.4047(5) nm^3, Z=4,μ=0.1084 cm^-1. The SOD-like activities of catalytic disrnutation of superoxide anions (O2^-· ) by the complexes were determined by means of modified nitroblue tetrazolium (NBT) photoreduction. The IC50 values of complexes 1, 2, 3 and 4 are 0.072, 0.147, 0.429 and 0.264 μmol·L^-1, respectively  相似文献   

19.
Four Schiff base complexes, [Cu2(L1)2(μ‐NCS)2] ( 1 ), [Cu2(L2)2(μ‐N3)2] ( 2 ), Cu[Cu(CH3COO)(L3)]2 ( 3 ), and [Zn{Zn(C3H4N2)(L3)}2(NO3)](NO3) ( 4 ) (where L1 = 2‐[(pyridin‐2‐ylmethylimino)methyl]phenol, L2 = 1‐[(pyridin‐2‐ylmethylimino)methyl]naphthalen‐2‐ol, and L3 = bis(salicylidene)‐1, 3‐propanediamine), were synthesized and characterized by elemental analyses, infrared spectroscopy, and single crystal X‐ray determinations. Both 1 and 2 are structurally similar di‐nuclear complexes, which are located at crystallographic inversion centers (with the center of the central Cu2N2 ring). In 1 , each copper atom has a slightly distorted square pyramidal configuration, coordinated by two nitrogen atoms and one oxygen atom from L1 and another two terminal nitrogen atoms from two bridging thiocyanate anions. The Cu···Cu separation is 3.466(3) Å. The structure of 2 is similar to that of 1 , with Cu···Cu separation of 3.368(2) Å. Both 3 and 4 are linear tri‐nuclear complexes. In 3 , the central Cu2+ ion is located on an inversion centre and has a distorted octahedral coordination involving four bridging O atoms from two Schiff base ligands (L3) in the equatorial plane and one O atom from each bridging acetate group in the axial positions. The coordination around the terminal Cu2+ ions is irregular‐square pyramidal, with two O and two N atoms of L3 in the basal plane and one O atom from an acetate group in the apical position. The acetate bridges linking the central and terminal Cu2+ ions are mutually trans. The Cu···Cu separation is 3.009(3) Å. In 4 , the coordination configuration of the central and the terminal zinc atoms are similar to that of the 3 , with Zn···Zn separation of 3.153(4) Å. The three Schiff bases and the corresponding three copper complexes exhibit good antibacterial properties, while the zinc complex 4 has nearly no.  相似文献   

20.
Four binuclear Co(Ⅱ), Ni(Ⅱ) and Cu(Ⅱ) complexes bridged by oxamidate (oxd) group have been synthesized, namely Co2(byp)2(oxd)(ClO4)2 (1), Co2(Me2bpy)2(oxd)(ClO4)2.H2O (2), Ni2(bpy)2(oxd)(ClO4)2.2H2O (3) and Cu2(Me2bpy)2(oxd)(NO3)2 (4). (bpy=2,2'-bipyridyl, Me2-bpy=4,4'-dimethylbipyridyl, oxd=oxamidate) The complexes are characterized by IR, UV spectra, EPR and variable-temperature magnetic susceptibility (4-300 K). The susceptibility data for. complexes 1 and 3 were least-squares fit to the susceptibility equation derived from the spin Hamiltonian H=-2J . S1 . S2. The exchange integral, J, was found to be equal to -3.62 cm-1 in 1 and -1.82 cm-1 in 3. This indicates a weak antiferromagnetic spin exchange interaction between the metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号