首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemical ionization mass spectra of five isomers of C3H6O (acetone, propionaldehyde, oxetane, propylene oxide and allyl alcohol) have been determined using a variety of reagent gases (H2, D2, N2/H2, CO2/H2 and CO/H2). The [C3H7O]+ ions produced by protonation of these isomers undergo very similar reactions to those reported for analogous [C3H7O]+ metastable ions; however, decomposing ions generated by chemical ionization appear to have somewhat higher internal energies. The results of 2H labelling studies (D2 reagent gas or labelled analogues of C3H6O) indicate that protonation occurs mainly on oxygen and are consistent with previous investigations of metastable oxonium ions. The protonated acetone ion is particularly stable, in agreement with the higher activation energies for fragmentation of this isomer than for other [C3H7O]+ structures. As the calculated heat of protonation of C3H6O is reduced by changing the reagent gas, so the extent to which fragmentation occurs decreases. This is discussed in the context of competition between fragmentation and collisional stabilization of the excited [C3H7O]+* ion. It is concluded that on average a large fraction (approaching 1) of the exothermicity of the protonation reaction resides in the [C3H7O]+* ions produced initially.  相似文献   

2.
Conclusions By using chemical ionization over a wide range of pressures, from 0.01 torr to atmospheric pressure, and also by selecting the reagent gas, different mass spectra of isomers can be obtained, which are suitable for their reliable identification.Under ionization conditions at atmospheric pressure in helium (reagent ions [H(H2O)n]+), peaks of cluster ions [MGH]+ and [2M+1]+ are observed in the spectrum of dimethyl fumarate, which are absent in the case of the cis-isomer.Under the conditions of chemical ionization at a normal pressure (0.4-0.2 torr) of the reagent gases Me3CH, n-C7H16 and at an ionic source temperature of 50°C, a stereospecific fragmentation of dimethyl maleate [MH]+-MeOH is observed, which is absent in the case of the the trans-isomer.In the chemical ionization spectra at reduced pressure of the reagent gases MeOH, EtOH, i-PrOH (0.01 torr), a peak of the cluster ion [MGH]+ is observed for dimethyl fumarate, which is absent in the spectra of the cis-isomer.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 4, pp. 815–819, April, 1985.  相似文献   

3.
For the first time decomposition was investigated of 4-alkoxy-5-amino-3-methylthiophene-2-carbonitriles under the conditions of electronic (70 eV) and chemical (reagent gas methane) ionization. At the electronic ionization the compounds under study [except for 4-(1-ethoxyethoxy) and 4-(ferrocenylmethoxy) derivatives] form stable molecular ions that decompose mainly by the cleavage of an alkyl radical from the alkoxy-substituent. Further fragmentation of the arising ion [M–Alk]+ depends on the substituent nature in the amino group. In the mass spectrum of 4-(ferrocenylmethoxy)-substituted thiophene peaks of the ion [FcCH2]+ and its fragmentation products prevail. In the mass spectra of chemical ionization predominant peaks belong to ions M, [M + H]+ and [M + C2H5]+, and fragment ions are absent.  相似文献   

4.
Fragmentation patterns of the molecular ions of 5-(methylsulfanyl)-1-[2-(vinyloxy)ethyl]-1H-pyrrol- 2-amines generated by electron impact (70 eV) and chemical ionization (methane as reagent gas) were studied for the first time. The electron impact mass spectra of all the examined compounds showed abundant molecular ions whose subsequent fragmentation followed three main pathways: elimination of EtS radical, elimination of methyl radical from the MeS group, and cleavage of the C-N and/or C-C bonds which is accompanied by rearrangement processes. Further decomposition of the [M - EtS]+ ion is determined by the structure of the amino group. The chemical ionization mass spectra displayed strong molecular and [M + H]+ ion peaks together with representative series of fragment ion peaks. Unlike electron impact, the main decomposition pathway under chemical ionization is elimination of methylsulfanyl radical from the [M + H]+ ion to give abundant [M + H — MeS]+ ion.  相似文献   

5.
The loss of a hydrogen atom from ionized 2-methylpropanenitrile is preceded by a drastic rearrangement of the molecular ion. The result of this fragmentation is the generation of two stable structurally different [C4H6N]+ ions, formed via different pathways. Their structures can be established by a careful comparison of the metastable ion spectra, collision activation spectra, and charge stripping spectra from the compound and its three deuterium labeled analogues and from [C4H6N]+ ions generated from reference compounds via electron impact ionization or in selected ion/molecule reactions.  相似文献   

6.
The formation of molecular ions, M+., under fast atom bombardment (FAB) conditions using a liquid matrix was examined by using a new type of synthesized compounds in which preferential M+. peaks appear in their FAB spectra. The FAB spectra were compared with the corresponding mass spectra obtained by the electron impact (EI) ionization, chemical ionization (CI) and charge-exchange ionization (CEI) methods. All of the spectra showed preferential peaks of M+. ion and a characteristic intense fragment ion peak originating from a β-fission. The FAB spectra were similar in the fragment ions appearing in the EI spectra and were very similar in the fragmentation pattern to the CEI spectra using Ar+. and Xe+. as the reagent ions. Further, the FAB spectra did not show any doubly charged ion peaks, while the 70 eV EI spectra showed the peaks of doubly charged molecular and/or fragment ions. The isobutane CI spectra of the synthesized compounds suggested that the formation of M+. ions occurred through the CE reaction with isobutane ion, C4H10+., and the CI spectra showed a marked intense fragment ion peak originating from the β-fission which seemed to occur characteristically in CEI processes. The results obtained suggested that the formation of M+. ions under matrix FAB conditions occurred mainly by CE reactions between the analytes M and matrix molecular ions B+. and/or fragment ions b+..  相似文献   

7.
The mass spectra of 5,6,6a,7,12,12a-hexahydrobenzo[a]anthracene and 2-methoxy, 3-methoxy-, 4-methoxy and 1-methyl-4-methoxy derivatives are reported. Among the fragment ions observed under electron impact ionization, [C8H8] and [M? C8H8] can be generated by a retro-Diels-Alder process. Studies of metastable ion reactions show these ions to be formed by fragmentation directly from the molecular ion. The CA spectra of the [C8H8] ions from the subject compounds were compared with spectra from ions of the same composition from various sources. From these data, kinetic energy release measurements and stereochemical considerations, it is concluded that these ions are formed by a stepwise, rather than a concerted mechanism.  相似文献   

8.
The chemistry of glycerol subjected to a high-energy particle beam was explored by studying the mass spectral fragmentation characteristics of gas-phase protonated glycerol and its oligomers by using tandem mass spectrometry. Both unimolecular metastable and collision-induced dissociation reactions were studied. Collision activation of protonated glycerol results in elimiation of H2O and CH3OH molecules. The resulting ions undergo further fragmentations. The origin of several fragment ions was established by obtaining their product and precursor ion spectra. Corresponding data for the deuterated analogs support those results. The structures of the fragment ions of compositions [C3H5O]+, [C2H5O]+, [C2H4O]+. and [C2H3O]+ derived from protonated glycerol were also identified. Proton-bound glycerol oligomers fragment principally via loss of neutral glycerol molecules. Dissociation of mixed clusters of glycerol and deuterated glycerol displays normal secondary isotope effects.  相似文献   

9.
The unimolecular metastable and collision-induced fragmentation reactions of [C3H7O]+ ions produced by gas-phase protonation of acetone, propanal, propylene oxide, oxetan and allyl alcohol have been studied. The CID studies show that protonation of acetone and allyl alcohol yield different stable ions with distinct structures while protonation of propanal or propylene oxide yield [C3H7O]+ ions of the same structure. Protonated oxetan rearranges less readily to give the same structure(s) as protonated propanal and propylene oxide. The [C3H7O]+ ions fragmenting as metastable ions after formation by CI have a higher internal energy than the same ions fragmenting after formation by EI. Deuteronation of the C3H6O isomers using CD4 reagent gas shows that loss of C2H3D proceeds by a different mechanism than loss of C2H4. The results are discussed in terms of potential energy profile for the [C3H7O]+˙ system proposed earlier.  相似文献   

10.
The mass spectrometric behavior of a) the tricarbonylchromium complexes of a series of aromatic hydrocarbons, b) the dimethyldiphenyl compounds of the Group IV elements (i.e., diphenylpropane, dimethyldiphenylsilane, etc.) and c) the mono- and bis-tricarbonylchromium complexes of these ligands under electron impact and chemical ionization conditions are reported. The MH+ ion is base peak for all of the simple arenetricarbonylchromium complexes using chemical ionization, whereas [M — 3 CO]+ or 52Cr+ dominate the spectra with electron impact ionization. The chemical ionization spectra of the series of Group IV element ligands do not exhibit signals in the molecular ion region, the base peak being [M — Ph]+. [M — CH3]+ is the electron impact base peak for each of the ligands except the lead-containing compound, for which the base peak is 208Pb+. The mono-tricarbonylchromium complexes yield chemical ionization molecular ion clusters, but their base peaks arise via fragmentation of the Group IV element—aromatic ring bonds. Electron impact ionization spectra of the mono complexes are characterized by losses of CO and the production of Cr+ ions, neither of which occurs with chemical ionization. For the series of bis-tricarbonylchromium complexes, an MH+ ion is prominent only in the chemical ionization spectrum of the diphenylpropane complex. The electron impact induced spectra of the bis-tricarbonylchromium complexes are similar to those of the mono-complexes in that loss of CO is a prominent feature.  相似文献   

11.
The structure and fragmentation of eight [C6H13O] + ions formed by protonation of C6H12O carbonyl compounds in the gas phase have been investigated using isotopic labeling and metastable ion studies to investigate the fragmentation reactions and collisional dissociation studies to probe ion structures. Protonated 3-methyl-2-pentanone and protonated 2-methyl-3-pentanone readily-interconvert by pinacolic-retro-pinacolic rearrangements; the remaining six ions represent stable ion structures, although in many cases fragmentation is preceded by pinacolic-type rearrangements. Unimolecular (metastable ion) fragmentation of the [C6H13O] + species occurs by elimination of H2O, C3H6, C4H8 and C2H4O. The last three elimination reactions appear to occur through the intermediacy of a proton-bound complex of a carbonyl compound and an olefin, with the proton residing with the species of higher proton affinity on decomposition of the complex.  相似文献   

12.
Electron impact induced fragmentation of the title compounds obeys a route where the lactam moiety, OCNH, is cleaved first, with the accompanying formation of a cycloalkene ion. This can be verified by low-resolution, high-resolution, B/E and B2/E spectra as well as by collisional activation spectra of, for example, the ions m/z 82 and 67 from 7-azabicyclo[4.2.0]octan-8-one and from cyclohexene. The only, and fairly weak, fragment ions including O and N are [C3H3O]+, [CkH2k-2N]+ (k = 5–8) and [C3H6N]+. The ammonia chemical ionization spectra are also characteristic for all four lactams and show the same dominant ions in all cases, namely [M + 1]+, [M + 1 + NH3]+˙ and [2 M + 1]+˙.  相似文献   

13.
The dissociative spectrum of the [C6H5S]+ ion derived by charge inversion from [C6H5S]?, shows a variety of fragmentations including the competitive losses of H?, C3H4 and the formation of [CHS]+. The spectrum of a deuteriated derivative shows that these three processes are preceded or accompanied by H/D scrambling. The corresponding [C6H5O]+ species also undergoes hydrogen scrambling prior to fragmentation. In marked contrast, the ion [p-MeC6H4S]+ does not undergo hydrogen randomization between the methyl and aryl groups, and positional integrity is retained during fragmentation. These results are compared with the properties of the same ions produced by conventional ionization.  相似文献   

14.
The effect of the precursor ion internal energy on the branching ratios obtained from collision induced dissociation fragmentation patterns was examined for [NH3]+ and [C2H4N]+. The ion internal energy was changed by varying both the chemical ionization reagent gas and the ion source pressure. Effects observed in the collision induced dissociation fragmentation patterns as a function of the ion source pressure are explained by the reaction exothermicities and by collisional deactivation of internally excited ions (at high pressure).  相似文献   

15.
[C13H9S]+, [C14H11]+, [C13H11]+ and [C8H7S]+ ions with unknown structures were generated from two [C14H12S]precursor ions by fragmentation reactions that must be preceded by extensive rearrangements. Ions with the same compositions, each with several initial structures, were prepared by simple bond-breaking reactions. Metastable characteristics were compared for each of the four types of ions. It was found than in all cases fast isomerization reactions occur prior to fragmentation, so that no information about the unknown ion structures could be obtained by comparison of the observed fragmentations of metastable ions.  相似文献   

16.
Additional evidence for the rearrangement of the 1- and 3-phenylcyclobutene radical cations, their corresponding ring-opened 1,3-butadiene ions and 1,2-dihydronaphthalene radical cations to methylindenetype ions has been obtained for the decomposing ions by mass analysed ion kinetic energy spectroscopy (MIKES). The nature of the [C9H7]+ and [C10H8] daughter ions arising from the electron ionization induced fragmentation of these [C10H10] precursors has been investigated by collisionally activated dissociation (CAD), collisional ionization and ion kinetic energy spectroscopy. The [C9H7]+ produced from the various C10H10 hydrocarbons are of identical structure or an identical mixture of interconverting structures. These ions are similar in nature to the [C9H7]+ generated from indene by low energy electron ionization. The [C10H8] ions also possess a common structure, which is presumably that of the maphthalene radical cation.  相似文献   

17.
The H2, N2/H2, CO2/H2, N2O/H2, CO/H2 and CH4 chemical ionization mass spectra of thirteen C8 to C11 alkylbenzenes are reported. Characteristic hydride and alkide ion abstraction reactions are observed with all reagent gases. The major fragmentation reactions of [MH]+ are olefin elimination to form a protonated arene and arene elimination to form an alkyl ion. From the effect of structure and protonation exothermicity it is concluded that rearrangement of primary alkyl groups to the more stable secondary or tertiary structure occurs prior to alkyl ion formation. A detailed fragmentation mechanism for protonated arenes is proposed. The ‘effective’ proton affinity of the methane-derived reagent system is estimated to be ~556 kJ mol?1.  相似文献   

18.
The origins and nature of the [C5H8]+? ions which form the base peak in the electron impact spectrum of limonene, at nominal electron energies greater than 11 eV, have been investigated. Linked scan techniques were used to study unimolecular and collision induced fragmentation reactions. No fragmentation pathway leading to [C5H8]+? could be found. Measurement of ionization efficiency curves indicated that the threshold for formation of C5H8[+?] lies above the range of internal energies deposited in incident ions by collisional activation. By a combination of comparisons of collisionally activated spectra and energetic considerations, the [C5H8]+? ions formed from limonene were shown to resemble those of the molecular ion of isoprene, while the neutral fragment is most likely isoprene also. Deuterium labelling experiments yielded evidence of extensive scrambling prior to fragmentation. The most probable mechanism of formation of [C5H8]+? appears to involve a retro Diels–Alder reaction of a structurally intact molecular ion of limonene.  相似文献   

19.
In order to establish the mechanism of CO loss occurring during metastable decomposition of protonated 1-indanone, fragmentations of monocyclic [C9H9O]+ isomers have been studied. These ions of known structure were prepared by CI protonation and fragmentation of the corresponding acids chlorides. It is demonstrated that the wide component of the [MH? CO]+ metastable peak induced by protonated 1-indanone fragmentation is the result of fragmentation of the [C6H5CH2CH2CO]+ isomer ion.  相似文献   

20.
The decomposition reactions of [C2H5O]+ ions produced by dissociative electron-impact ionization of 2-propanol have been studied, using 13C and deuterium labeling coupled with metastable intensity studies. In addition, the fragmentation reactions following protonation of appropriately labeled acetaldehydes and ethylene oxides with [H3]+ or [D3]+ have been investigated. In both studies particular attention has been paid to the reactions leading to [CHO]+, [C2H3]+ and [H3O]+. In both the electron-impact-induced reactions and the chemical ionization systems the fragmentation of [C2H5O]+ to both [H3O]+ and [C2H3]+ proceeds by a single mechanism. For each case the reaction involves a mechanism in which the hydrogen originally bonded to oxygen is retained in the oxygen containing fragment while the four hydrogens originally bonded to carbon become indistinguishable. The fragmentation of [C2H5O]+ to produce [CHO]+ proceeds by a number of mechanisms. The lowest energy route involves complete retention of the α carbon and hydrogen while a higher energy route proceeds by a mechanism in which the carbons and the attached hydrogens become indistinguishable. A third distinct mechanism, observed in the electron-impact spectra only, proceeds with retention of the hydroxylic hydrogen in the product ion. Detailed fragmentation mechanisms are proposed to explain the results. It is suggested that the [C2H5O]+ ions formed by protonation of acetaldehyde or ionization of 2-propanol are produced initially with the structure [CH3CH?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm O}\limits^ + $\end{document}H] (a), but isomerize to [CH2?CH? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm O}\limits^ + $\end{document}H2] (e) prior to decomposition to [C2H3]+ or [H3O]+. The results indicate that the isomerization ae does not proceed directly, possibly because it is symmetry forbidden, but by two consecutive [1,2] hydrogen shifts. A more general study of the electron-impact mass spectrum of 2-propanol has been made and the fragmentation reactions proceeding from the molecular ion have been identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号