首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 334 毫秒
1.
We study the model theory of vector spaces with a bilinear form over a fixed field. For finite fields this can be, and has been, done in the classical framework of full first-order logic. For infinite fields we need different logical frameworks. First we take a category-theoretic approach, which requires very little set-up. We show that linear independence forms a simple unstable independence relation. With some more work we then show that we can also work in the framework of positive logic, which is much more powerful than the category-theoretic approach and much closer to the classical framework of full first-order logic. We fully characterise the existentially closed models of the arising positive theory. Using the independence relation from before we conclude that the theory is simple unstable, in the sense that dividing has local character but there are many distinct types. We also provide positive version of what is commonly known as the Ryll-Nardzewski theorem for ω-categorical theories in full first-order logic, from which we conclude that bilinear spaces over a countable field are ω-categorical.  相似文献   

2.
In this paper, we present an alternative interpretation of propositional inquisitive logic as an epistemic logic of knowing how. In our setting, an inquisitive logic formula α being supported by a state is formalized as knowing how to resolve α (more colloquially, knowing how α is true) holds on the S5 epistemic model corresponding to the state. Based on this epistemic interpretation, we use a dynamic epistemic logic with both know-how and know-that operators to capture the epistemic information behind the innocent-looking connectives in inquisitive logic. We show that the set of valid know-how formulas corresponds precisely to the inquisitive logic. The main result is a complete axiomatization with intuitive axioms using the full dynamic epistemic language. Moreover, we show that the know-how operator and the dynamic operator can both be eliminated without changing the expressivity over models, which is consistent with the modal translation of inquisitive logic existing in the literature. We hope our framework can give an intuitive alternative interpretation to various concepts and technical results in inquisitive logic, and also provide a powerful and flexible tool to handle both the inquisitive reasoning and declarative reasoning in an epistemic context.  相似文献   

3.
We prove a completeness theorem for K, the infinitary extension of the graded version K0 of the minimal normal logic K, allowing conjunctions and disjunctions of countable sets of formulas. This goal is achieved using both the usual tools of the normal logics with graded modalities and the machinery of the predicate infinitary logics in a version adapted to modal logic.  相似文献   

4.
The semantics of modal logics for reasoning about belief or knowledge is often described in terms of accessibility relations, which is too expressive to account for mere epistemic states of an agent. This paper proposes a simple logic whose atoms express epistemic attitudes about formulae expressed in another basic propositional language, and that allows for conjunctions, disjunctions and negations of belief or knowledge statements. It allows an agent to reason about what is known about the beliefs held by another agent. This simple epistemic logic borrows its syntax and axioms from the modal logic KD. It uses only a fragment of the S5 language, which makes it a two-tiered propositional logic rather than as an extension thereof. Its semantics is given in terms of epistemic states understood as subsets of mutually exclusive propositional interpretations. Our approach offers a logical grounding to uncertainty theories like possibility theory and belief functions. In fact, we define the most basic logic for possibility theory as shown by a completeness proof that does not rely on accessibility relations.  相似文献   

5.
In this paper, we introduce a foundation for computable model theory of rational Pavelka logic (an extension of ?ukasiewicz logic) and continuous logic, and prove effective versions of some related theorems in model theory. We show how to reduce continuous logic to rational Pavelka logic. We also define notions of computability and decidability of a model for logics with computable, but uncountable, set of truth values; we show that provability degree of a formula with respect to a linear theory is computable, and use this to carry out an effective Henkin construction. Therefore, for any effectively given consistent linear theory in continuous logic, we effectively produce its decidable model. This is the best possible, since we show that the computable model theory of continuous logic is an extension of computable model theory of classical logic. We conclude with noting that the unique separable model of a separably categorical and computably axiomatizable theory (such as that of a probability space or an Lp Banach lattice) is decidable.  相似文献   

6.
Temporal logics have lately proven to be a valuable tool for various control applications by providing a rich specification language. Existing temporal logic-based control strategies discretize the underlying dynamical system in space and/or time. We will not use such an abstraction and consider continuous-time systems under a fragment of signal temporal logic specifications by using the associated robust semantics. In particular, this paper provides computationally-efficient funnel-based feedback control laws for a class of systems that are, in a sense, feedback equivalent to single integrator systems, but where the dynamics are partially unknown for the control design so that some degree of robustness is obtained. We first leverage the transient properties of a funnel-based feedback control strategy to maximize the robust semantics of some atomic temporal logic formulas. We then guarantee the satisfaction for specifications consisting of conjunctions of such atomic temporal logic formulas with overlapping time intervals by a suitable switched control system. The result is a framework that satisfies temporal logic specifications with a user-defined robustness when the specification is satisfiable. When the specification is not satisfiable, a least violating solution can be found. The theoretical findings are demonstrated in simulations of the nonlinear Lotka–Volterra equations for predator–prey models.  相似文献   

7.
We develop a version of Herbrand's theorem for continuous logic and use it to prove that definable functions in infinite‐dimensional Hilbert spaces are piecewise approximable by affine functions. We obtain similar results for definable functions in Hilbert spaces expanded by a group of generic unitary operators and Hilbert spaces expanded by a generic subspace. We also show how Herbrand's theorem can be used to characterize definable functions in absolutely ubiquitous structures from classical logic.  相似文献   

8.
Negation-free propositional logic (or first-order logic) is clearly less expressive than the corresponding full system with negation. However, we present two complexity results for logic without negation that are no different from those for the original system. First, the problem of determining logical implication between sentences composed solely of conjunctions and disjunctions is shown to be as difficult as that between arbitrary sentences. Second, we show that the problem of determining a minimum satisfying assignment for a propositional formula in negation-free conjunctive normal form, even with no more than two disjuncts per clause, is NP-complete. We also show that unless P = NP, no polynomial time approximation scheme can exist for this problem.  相似文献   

9.
We study modal logics based on neighbourhood semantics using methods and theorems having their origin in topological model theory. We thus obtain general results concerning completeness of modal logics based on neighbourhood semantics as well as the relationship between neighbourhood and Kripke semantics. We also give a new proof for a known interpolation result of modal logic using an interpolation theorem of topological model theory.  相似文献   

10.
We study the quantum logics which satisfy the Riesz Interpolation Property. We call them the RIP logics. We observe that the class of RIP logics is considerable large—it contains all lattice quantum logics and, also, many (infinite) non‐lattice ones. We then find out that each RIP logic can be enlarged to an RIP logic with a preassigned centre. We continue, showing that the “nearly” Boolean RIP logics must be Boolean algebras. In a somewhat surprising contrast to this, we finally show that the attempt for the σ‐complete formulation of this result fails: We show by constructing an example that there is a non‐Boolean nearly Boolean σ‐RIP logic. As a result, there are interesting σ‐RIP logics which are intrinsically close to Boolean σ‐algebras. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
PRISM is a probabilistic logic programming formalism which allows defining a probability distribution over possible worlds. This paper investigates learning a class of generative PRISM programs known as failure-free. The aim is to learn recursive PRISM programs which can be used to model stochastic processes. These programs generalise dynamic Bayesian networks by defining a halting distribution over the generative process. Dynamic Bayesian networks model infinite stochastic processes. Sampling from infinite process can only be done by specifying the length of sequences that the process generates. In this case, only observations of a fixed length of sequences can be obtained. On the other hand, the recursive PRISM programs considered in this paper are self-terminating upon some halting conditions. Thus, they generate observations of different lengths of sequences. The direction taken by this paper is to combine ideas from inductive logic programming and learning Bayesian networks to learn PRISM programs. It builds upon the inductive logic programming approach of learning from entailment.  相似文献   

12.
We deal with Sylvan’s logic CCω. It is proved that this logic is a conservative extension of positive intuitionistic logic. Moreover, a paraconsistent extension of Sylvan’s logic is constructed, which is also a conservative extension of positive intuitionistic logic and has the property of being decidable. The constructed logic, in which negation is defined via a total accessibility relation, is a natural intuitionistic analog of the modal system S5. For this logic, an axiomatization is given and the completeness theorem is proved. Supported by RFBR grant No. 06-01-00358 and by the Council for Grants (under RF President) and State Aid of Fundamental Science Schools, project NSh-4787.2006.1. __________ Translated from Algebra i Logika, Vol. 46, No. 5, pp. 533–547, September–October, 2007.  相似文献   

13.
In this paper we formulate a first order theory of continuous functions on product topologies via generalized quantifiers. We present an axiom system for continuous functions on product topologies and prove a completeness theorem for them with respect to topological models. We also show that if a theory has a topological model which satisfies the Hausdorff separation axiom, then it has a 0-dimensional, normal topological model. We conclude by obtaining an axiomatization for topological algebraic structures, e.g. topological groups, proving a completeness theorem for the analogue with countable conjunctions and disjunctions, and presenting counterexamples to interpolation and definability.  相似文献   

14.
The perplex number system is a generalization of the abstract logical relationships among electrical particles. The inferential logic of the new number system is homologous to the inferential logic of the progression of the atomic numbers. An electrical progression is defined categorically as a sequence of objects with teridentities. Each identity infers corresponding values of an integer, units and a correspondence relation between each unit and its integer. Thus, in this logical system, each perplex numeral contains an exact internal representational structure; it carries an internal message. This structure is a labeled bipartite graph that is homologous to the internal electrical structure of a chemical atom. The formal logical operations are conjunctions and disjunctions. Combinations of conjunctions and disjunctions compose the spatiality of objects. Conjunctions may include the middle term of pairs of propositions with a common term, thereby creating new information. The perplex numerals are used as a universal source of diagrams.The perplex number system, as an abstract generalization of concrete objects and processes, constitutes a new exact notation for chemistry without invoking alchemical symbols. Practical applications of the number system to concrete objects (chemical elements, simple ions and molecules, and the perplex isomers, ethanol and dimethyl ether) are given. In conjunction with the real number system, the relationships between the perplex number system and scientific theories of concrete systems (thermodynamics, intra-molecular dynamics, molecular biology and individual medicine) are described.  相似文献   

15.
A spatial modal logic (SML) is introduced as an extension of the modal logic S4 with the addition of certain spatial operators. A sound and complete Kripke semantics with a natural space (or location) interpretation is obtained for SML. The finite model property with respect to the semantics for SML and the cut‐elimination theorem for a modified subsystem of SML are also presented. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
17.
The distribution semantics integrates logic programming and probability theory using a possible worlds approach. Its intuitiveness and simplicity have made it the most widely used semantics for probabilistic logic programming, with successful applications in many domains. When the program has function symbols, the semantics was defined for special cases: either the program has to be definite or the queries must have a finite number of finite explanations. In this paper we show that it is possible to define the semantics for all programs. We also show that this definition coincides with that of Sato and Kameya on positive programs. Moreover, we highlight possible approaches for inference, both exact and approximate.  相似文献   

18.
二值命题逻辑中理论的发散性、相容性及其拓扑刻画   总被引:10,自引:1,他引:10  
王国俊  折延宏 《数学学报》2007,50(4):841-850
在二值命题逻辑系统中基于逻辑度量空间(F(S),ρ)而建立起了逻辑理论的发散性、相容性和理论的拓扑性质之间的联系。证明了逻辑理论Г是全发散的当且仅当D(Г)在(F(S),ρ)中稠密,闭理论Г是相容的当且仅当Г在(F(S),ρ)中不含内点,证明了(F(S),ρ)是零维空间,并具有一种类似于樊畿性质的所谓“有限等球连通性”.  相似文献   

19.
In the present article, we obtain a new criterion for amodel of a universally axiomatizable theory to be existentially closed. The notion of a maximal existential type is used in the proof and for investigating properties of countable infinite existentially closed structures. The notions of a prime and a homogeneous model, which are classical for the general model theory, are introduced for such structures. We study universal theories with the joint embedding property admitting a single countable infinite existentially closed model. We also construct, for every natural n, an example of a complete inductive theory with a countable infinite family of countable infinite models such that n of them are existentially closed and exactly two are homogeneous.  相似文献   

20.
First-order logic with dependent sorts, such as Makkai's first-order logic with dependent sorts (FOLDS), or Aczel's and Belo's dependently typed (intuitionistic) first-order logic (DFOL), may be regarded as logic enriched dependent type theories. Categories with families (cwfs) is an established semantical structure for dependent type theories, such as Martin-Löf type theory. We introduce in this article a notion of hyperdoctrine over a cwf, and show how FOLDS and DFOL fit in this semantical framework. A soundness and completeness theorem is proved for DFOL. The semantics is functorial in the sense of Lawvere, and uses a dependent version of the Lindenbaum-Tarski algebra for a DFOL theory. Agreement with standard first-order semantics is established. Applications of DFOL to constructive mathematics and categorical foundations are given. A key feature is a local propositions-as-types principle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号