首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Bromination of 3-bromofuro[2,3-b]- 1a , -[3,2-b]- 1b and - [3,2-c]pyridine 1d afforded the 2,3-dibromo derivatives 2a, 2b and 2d , while the -[2,3-c]- compound 1c did not give the dibromo derivative. Nitration of 1a-d gave the 2-nitro-3-bromo compounds 3a-d . The N-oxides 4a-d of 1a-d were submitted to the cyanation with trimethylsilyl cyanide to yield the corresponding α-cyanopyridine compound 6a-d . Chlorination of 4a and 4d with phosphorus oxychloride gave mainly the chloropyridine derivatives 7a, 7′a and 7d , while 4b and 4c gave mainly the chlorofuran derivatives 7′b and 7′c accompanying formation of the chloropyridine derivatives 7b, 7′b and 7c . Acetoxylation of 4a and 4b with acetic anhydride yielded the acetoxypyridine compounds 8a, 8′a and 8b , while 4c and 4d gave the acetoxypyridine 8′c, 8′d and 8′d , pyridone 8c and 8d , acetoxyfuran 8′c and dibromo compound 9c and 9′c.  相似文献   

2.
Chlorination of the N-oxides of furo[2,3-b]- 1a , -[2,3-c]- 1b and -[3,2-c]pyridine 1c with phosphorus oxychloride afforded compounds substituted normally at the α- or λ-position to the ring nitrogen, 2a, 2′a, 2b, 2c, 2′c and 2′c , and in addition, in the case of 1b , compounds substituted on the furan ring, 2′b and 2″b . The structures of these compounds were confirmed from their ir, nmr and mass spectra. The major chlorinated products 2a, 2b and 2c were converted to methoxy- 5a, 5b and 5c , N-pyrrolidyl- 7a, 7b and 7c , and phenylthiofuropyridines 8a, 8b , and 8c .  相似文献   

3.
Acetoxylation of N-oxide of furo[2,3-b]- 2a , -[3,2-b]- 2b , -[2,3-c]- 2c and -[3,2-c]pyridine 2d with acetic anhydride afforded compounds substituted normally at the α- or γ-position to the ring nitrogen, 3a, 4a, 4b, 3d, 4d, 8 and 9 , and in addition compounds substituted on the furan ring, 5a, 6a, 5b, 6b, 7b, 5c and 7c which were unexpected compounds. The structures of these compounds were established from the ir, nmr and mass spectra, and x-ray crystal analysis of 5b .  相似文献   

4.
Lithiation of 2-methylfuro[2,3-b]- 1a , -[2,3-c]- 1c and -[3,2-c]pyridine 1d with lithium diisopropylamide at ?75° and subsequent treatment with deuterium chloride in deuterium oxide afforded 2-monodeuteriomethyl compounds 2a, 2c and 2d , while 2-methylfuro[3,2-b]pyridine 1b gave a mixture of 1b, 2b , 2-methyl-3-deuteriofuro[3,2-b]pyridine 2′b and 2-(1-proynyl)pyridin-3-ol 5 . The same reaction of 1a at ?40° gave 3-(1,2-propadienyl)pyridin-2-ol 3 and 3-(2-propynyl)pyridin-2-ol 4 . Reaction of the lithio intermediates from 1a, 1c and 1d with benzaldehyde, propionaldehyde and acetone afforded the corresponding alcohol derivatives 6a, 6c, 6d, 7a, 7c, 7d, 8a, 8c and 8d in excellent yield; while the reaction of lithio intermediate from 1b gave the expected alcohols 6b and 8b in lower yields accompanied by formation of 3-alkylated compounds 9, 11, 12 and compound 5 . While reaction of the intermediates from 1a, 1b and 1d with N,N-dimethylacetamide yielded the 2-acetonyl compounds 13a, 13b and 13d in good yield, the same reaction of 1c did not give any acetylated product but recovery of the starting compound almost quantitatively.  相似文献   

5.
This paper describes the preparation and hydrolysis of 2-cyano and 3-cyano derivatives of furo[3,2-b]-, furo[2,3-c]- and furo[3,2-c]pyridine. Treatment of furopyridines 1a , 1b and 1c with n-butyllithium in hexane-tetrahydrofuran at -70° and subsequent addition of N,N-dimethylformamide yielded 2-formyl derivatives 2a , 2b and 2c. Dehydration of the oximes 4a , 4b and 4c of 2a , 2b and 2c gave 2-cyano compounds 5a , 5b and 5c , which were hydrolyzed to give 2-carboxylic acids, 6a, 6b and 6c , respectively. Reaction of 3-bromo compounds 7a , 7b and 7c with copper(I) cyanide in N,N-dimethylformamide afforded 3-cyano derivatives 8a , 8b and 8c. Alkaline hydrolysis of 8a , 8b and 8c gave compounds formed by fission of the 1-2 bond of furopyridines 9a , 9b and 9c , while acidic hydrolysis gave the corresponding carboxamides, 10a , 10b and 10c.  相似文献   

6.
Nitration of 2,3-dihydrofuro[3,2-b]- N-oxide 3b and -[2,3-c]pyridine N-oxide 3c afforded the nitropyridine compounds 4b, 5b and 6 from 3b and 4c, 5c, 5′c and 7 from 3c , while -[2,3-b]- N-oxide 3a and -[3,2-c]pyridine N-oxide 3d did not give the nitro compound. Chlorination of 3b and 3c with phosphorus oxychloride yielded mainly the chloropyridine derivatives 15b, 15′b from 3b and 15c and 15′c from 3c , whereas 3a and 3d gave pyridine derivatives formed through fission of the 1–2 ether bond of the furo-pyridines 13a , 14 and 13d . Acetoxylation of 3b and 3c gave 3-acetoxy derivatives 18b and 18c and the parent compound 1b and 1c . Acetoxylation of 3a yielded compounds formed through fission of the 1–2 bond 16 and 17 and 3d gave furopyridones 19 and 19 ′. Cyanation of 3b and 3c yielded mainly the cyanopyridine compounds 20b, 20c and 20′c . Cyanation of 3a and 3d gave the cyanopyridine compounds 20a , 20d and 20′d accompanying formation of the pyridine derivatives 21a, 21d and 21′d .  相似文献   

7.
The use of tributyltin cyanide, trimethylsilyl cyanide and potassium cyanide in the Reissert reaction is contrasted in the furo[3,2-c]pyridine, thieno[3,2-c]pyridine, thieno[2,3-dpyridazine, and thieno[2,3-d]pyrimidine ring systems.  相似文献   

8.
Furo[3,2-c]-( 1a ), -[2,3-c]- ( 1b ) and -[3,2-b]pyridine ( 1c ) were reacted with isopropyl chloroformate and trimethyl phosphite to give dimethyl 5-isopropoxycarbonyl-4,5-dihydrofuro[3,2-c]pyridine-4-phosphonate ( 2a ), dimethyl 6-isopropoxycarbonyl-6,7-dihydrofuro[2,3-c]pyridine-7-phosphonate ( 2b ) and dimethyl 4-isopropoxycarbonyl-4,7-dihydrofuro[3,2-b]pyridine-7-phosphonate ( 2c ) as unstable syrups. Reaction of 2b and 2c with n-butyllithium and then with benzaldehyde, p-methoxybenzaldehyde, p-cyanobenzalde-hyde or propionaldehyde afforded the normal Wittig reaction products 5b-H, 5b-OMe, 5b-CN, 5b-Et, 5c-H, 5c-H, 5c-OMe and 5c-CN , except for 2b with propionaldehyde. While, the same reactions of compound 2a and the reaction of 2b with propionaldehyde afforded the unexpected products, 5-isopropoxycar-bonylfuro[3,2-c]pyridinio-4-aryl-(or ethyl)methoxides 3a-H, 3a-OMe, 3a-CN and 3a-Et , 4-(1′-aryl(or ethyl)-1′-hydroxymethyl)furo[3,2-c]pyridines 4a-H, 4a-OMe, 4a-CN and 4a-Et accompanying formation of the normal products. Treatment of the normal Wittig reaction products with lithium diisopropylamide and then with acetone gave the derivatives alkylated at the 2-or the benzylic positions.  相似文献   

9.
Furo[2,3-b:4,5-c‘]- 1a , -[3,2-b:4,5-c’]- 1b , -[2,3-c:4,5-c‘]- 1c and -[3,2-c:4,5-c’]dipyridine 1d were derived to the N-oxides 2a-d , N‘-oxides 2′b , 2′c or N,N’-dioxide 3b-d by N-oxidation with m-chloroperbenzoic acid. Chlorination of these N-oxides, N′-oxide and N,N′-dioxides with phosphorus oxychloride afforded compounds chlorinated at the α-position(s) to the ring nitrogen 4a-d , 4′c , 14b-d and 14′b . Acetoxylation of N-oxides 2a-d and 2′c with acetic anhydride gave the corresponding pyridone compounds 6a-d and 6′c in good yields, while the acetoxylation of N,N′-dioxides gave a complex mixture from which no compound could be isolated. Cyanation of 2a-d, 2′c and 3b-d with trimethylsilyl cyanide yielded the cyano compounds 7a-d , 7′c , cyano-N-oxides 15b-d and dicyano compounds 15′c and 15′d . Monocyano compounds 7a-d and 7′c were converted to the imino esters 8a-d and 8′c by treatment with sodium ethoxide. Imino esters were derived to the carboxylic esters 9a-d and 9′c , from which the corresponding alde hydes 10a-d and 10′c were obtained by reduction with diisobutylaluminum hydride. Dicyanide 15′c was converted to dialdehyde 19 by the treatment with sodium ethoxide, and the subsequent hydrolysis of the imino ester and reduction of the carboxylic ester with diisobutylaluminum hydride.  相似文献   

10.
The preparation of 2-aminomethyl- 3a-d , 2-acetamidomethyl- 4a-d , 2-N,N-dimethylaminomethyl- 5a-d , 2-(1-hydroxy-2-nitroethyl)- 6a-d , 2-(1-hydroxyl-2-aminoethyl)- 7a-d and 2-(1-hydroxy-2-N,N-dimethylaminoethyl)- 8b-d derivatives of furo[2,3-b]-, furo[3,2-b]-, furo[2,3-c]- and furo[3,2-c]pyridine is described.  相似文献   

11.
The N-oxide 2 of furo[3,2-b]pyridine ( 1 ) was cyanated by the Reissert-Henze reaction with potassium cyanide and benzoyl chloride to give 5-cyano derivative 3 , which was converted to the carboxamide 4 , carboxylic acid 5 , ethyl ester 6 and ethyl imidate 8 . Chlorination of 2 with phosphorus oxychloride yielded 2-9a , 3- 9b , 5- 9c and 7-chloro derivative 9d . Reaction of 9d with sodium methoxide, pyrrolidine, N,N-dimethylformamide and ethyl cyanoacetate afforded 7-methoxy- 10 , 7-(1-pyrrolidyl)- 11 and 7-dimethylaminofuro[3,2-b]pyridine ( 14 ) and 7-(1-cyano-1-ethoxy-carbonyl)methylene-4,7-dihydrofuro[3,2-b]pyridine ( 12 ). Nitration of 2 with a mixture of fuming nitric acid and sulfuric acid gave 2-nitrofuro[3,2-b]pyridine N-oxide ( 15 ).  相似文献   

12.
Derivatives of the 5H-thiazolo[3,2-b]- and 2H-thiazolo[2,3-c]-as-triazine systems were synthesized via condensation of tetrahydro-I-methyl-as-triazine-3(2H)-thione with ethylene dibromide and ethyl bromoacetate, respectively. An hypothesis is given for the formation of the [3,2-b] system in one of these reactions and the [2,3-c] system in the other. Structure proof was accomplished by an unequivocal synthesis of one of the [2,3-c] derivatives.  相似文献   

13.
Three compounds, thieno[3,2-b]pyridine 4-oxide, 7-nitrothieno[3,2-b]pyridine 4-oxide ( 1 c), and 6-cyano-thieno[2,3-b]pyridine, undergo nitration by means of a mixture of nitric and sulfuric acids to yield 3,7-dinitro-thieno[3,2-b]pyridine (3%), 3,7-dinitrothieno[3,2-b]pyridine 4-oxide ( 1d ) (26%), and 6-carbamoyl-5-nitrothieno[2,3-b]pyridine ( 6b ) (11%), respectively. Structures of the products were ascertained by spectral means, notably infrared, 1H nmr, and 13C nmr. It is proposed that 1d exists (at least in part) as a tricyclic structure and that 6b may result from an intramolecular mechanism of nitration. An attempt to de-N-oxygenate 1c with excess triphenylphosphine removes more than one oxygen atom per molecule (as triphenylphosphine oxide) without producing an identified thienopyridine product.  相似文献   

14.
A simple synthesis of furo[2,3-c]pyridine and its 2- and 3-methyl derivatives from ethyl 3-hydroxyisonicotinate ( 2 ) is described. The hydroxy ester 2 was O-alkylated with ethyl bromoacetate or ethyl 2-bromopropionate to give the diester 3a or 3b . Cyclization of compound 3a afforded ethyl 3-hydroxyfuro [2,3-c]pyridine-2-carboxylate ( 4 ) which was hydrolyzed and decarboxylated to give furo[2,3-c]pyridin-3(2H)-one ( 5a ). Cyclization of 3b gave the 2-methyl derivative 5b . Reduction of 5a and 5b with sodium borohydride yielded the corresponding hydroxy derivative 6a and 6b , respectively, which were dehydrated with phosphoric acid to give furo[2,3-c]pyridine ( 7a ) and its 2-methyl derivative 7b . 4-Acetylpyridin-3-ol ( 8 ) was O-alkylated with ethyl bromoacetate to give ethyl 2-(4-acetyl-3-pyridyloxy) acetate ( 9 ). Saponification of compound 9 , and the subsequent intramolecular Perkin reaction gave 3-methylfuro[2,3-c]pyridine ( 10 ). Cyclization of 9 with sodium ethoxide gave 3-methylfuro[2,3-c]pyridine-2-carboxylic acid, which in turn was decarboxylated to give compound 10 .  相似文献   

15.
The syntheses and reactions of various thieno[2,3-c]- and thieno[3,2-c] pyridines are described. Molecular orbital calculations were performed on thieno[2,3-c]pyridine (1) in order to determine the most susceptible sites to electrophilic and nucleophilic attack. Superdelocalizability values, Sr- are reported for each position in this molecule to give relative orders of reactivity towards the two types of reactions. Electrophilic attack was found to occur experimentally at C-3 in all the thienopyridines studied. Peracid oxidation of thieno[2,3-c]- and thieno[3,2-c]pyridines produced only the N-oxide. The lack of reactivity of certain thienopyridines under Vilsmeier formylation and Friedel-Crafts acetylation conditions was related to their basicities. The dissociation constants of various thienopyridinium salts are reported.  相似文献   

16.
The boron trifluoride catalyzed 1,4-addition of 2,3-dihydro-5-methylfuran to N-(p-methoxy-benzylidene)-1,4-benzodioxan-6-amine (II) gave 2 pairs of epimers, 2,3,3a,4,5,8,9,11b-octahydro-4-(p-methoxyphenyl)-11b-methyl-p-dioxino[2,3-g]furo[3,2-c]quinoline (IIIa and b) and 2,3,7,8,8a,9.10,1la-octahydro-8-(p-methoxyphenyl)-11a-methyl-p-dioxino[2,3-f]furo[3,2-c]quinoline (IVa and b). When N-(p-methoxybenzylidene)-3,4-methylenedioxyaniline (V) was condensed with 2,3-dihydro-5-methylfuran in an analogous manner, a mixture of 2 epimers of 2,3,3a,4,5,10b-hexahydro-4-(p-methoxyphenyl)-10b-methyl[1,3]dioxolo[4,5-g]furo[3,2-c]quinoline (VIa and b) was isolated. Treatment of this mixture with sulfur afforded 6-(p-methoxyphenyl)-8-methyl-1,3-dioxolo[4,5-g]quinoline-7-ethanol (VIII). Structural assignments for all of the products were made from NMR spectra. None of the compounds possessed appreciable biological activity.  相似文献   

17.
The 13C nmr spectra of 2- or 3-monosubstituted furo[2,3-b]- 1a-1j , furo[3,2-b]- 2a-2j , furo[2,3-c]- 3a-3j and furo[3,2-c]pyridine derivatives 4a-4j are reported. Effects by change in annelation and substituent effects on 13C chemical shifts and carbon-proton coupling constants are discussed. The spectra of benzo[b]furan derivatives 5a-5j having the corresponding substituent are also reported for comparison.  相似文献   

18.
This paper describes the synthesis of four tricyclic heterocycles, furo[2,3–6:4,5-c']- ( 5a ), furo[3,2-b:4,5-c']- ( 5b ), furo[2,3-c:4,5-c']- ( 5c ) and furo[3,2-c:4,5-c']dipyridine ( 5d ). Starting with 2-formylfuropyridines ( 1a-d ), β-(2-furopyridyl)acrylic acids 2a-d were obtained by condensing with malonic acid. The acrylic acids were converted to the acid azides by reaction with ethyl chloroformate and the subsequent reaction with sodium azide. Heating of the acid azides at 230–240° with diphenylmethane and tributylamine gave tricyclic pyridinones 3a-d , which were converted to the respective chloro derivatives 4a-d by reaction with phosphorus oxychloride. Reduction of the chloro compounds over palladium-charcoal yielded compounds 5a-d respectively. All the compounds 2 to 5 were characterized by elemental analysis and spectral data. The H and 13C nmr and electronic spectral features of the furodipyridines were discussed comparing with those of the parent furopyridines.  相似文献   

19.
Reaction of 5-methyl-4,5,6,7-tetrahydrofuro[3,2-c]- ( 1 ) and 6-methyl-4,5,6,7-tetrahydrofuro[2,3-c]pyridine ( 2 ) with hydrochloric acid gave novel dimerized compounds 3a-d and 4a-d , respectively. The structures of 3a, 3b, 4a and 4b were determined by spectroscopic method, and 3c, 3d, 4c and 4d by single crystal X-ray analysis. The reaction courses for the formation of these compounds are proposed.  相似文献   

20.
Some 8- or 9-halobenzofuro[2,3-b]quinolines ( 1a , 8-F, 8-C1, 9-F, 9-Cl) and 9-halobenzofuro[2,3-b]quinoline-11-carboxylic acid ( 1b , F, Cl) were synthesized from 6- or 7-halo-3-(2-methoxyphenyl)-2-oxo-1,2-dihydroquino-line-4-carboxylic acids ( 3 ). And, some 9-halo-11(6H)-benzofuro[2,3-b]quinolinone ( 8 , F, Cl, Br) and 2-halo-6(5H)-benzofuro[3,2-c]quinolinone ( 9 , F, Cl, Br) were synthesized from 6-halo-4-hydroxy-3-(2-methoxyphenyl)-2(1H)-quinolinone ( 7 ), and they were converted to the corresponding chlorohalobenzofuroquinolines ( 1c , 9-F, 9-C1, 9-Br, and 2 , F, Cl, Br).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号