首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal decomposition of the diazonium sulfate derived from N-methyl-(1-phenyl-3-methylpyrazol-5-yl)-2-aminobenzamide afforded products formulated as 1-phenyl-3-methyl[2]benzopyrano[4,3-c]pyrazol-5-one (yield 10%), 1,4-dimethyl-3-phenylpyrazolo[3,4-c]isoquinolin-5-one (yield 10%), N-methyl-(1-phenyl-3-methylpyrazol-5-yl)-2-hydroxybenzamide (yield 8%) and 4′-hydroxy-2,3′-dimethyl-1′-phenylspiro[isoindoline-1,5′-[2]-pyrazolin]-3-one (yield 20%). Decomposition of the diazonium sulfate derived from N-methyl-(1,3-diphenylpyrazol-5-yl)-2-aminobenzamide gave products formulated as 7,9-dimethyldibenzo[e,g]pyrazolo[1,5-a][1,3]-diazocin-10-(9H)one (yield 8%), 4-methyl-1,3-diphenylpyrazolo[3,4-c]isoquinolin-5-one (yield 7%) and 4′-hydroxy-2-methyl-1′,3′-diphenylspiro[isoindoline-1,5′-[2]pyrazolin]3-one (yield 10%). The spiro compounds 6a,b underwent thermal and acid-catalysed conversion into the hitherto unknown 2-benzopyrano[4,3-c]pyrazole ring system 7a,b in good yield. Analytical and spectral data are presented which supported the structures proposed.  相似文献   

2.
Classical, antifolate inhibitors of thymidylate synthase often suffer from a number of potential disadvantages when used as antitumor agents. These include impaired uptake due to an alteration of the active transport system required for cellular uptake, as well as the formation of long acting, non‐effluxing polygluta‐mates via folypolyglutamate synthetase, which are responsible for toxicity to normal cells. To overcome some of the disadvantages of classical thymidylate synthase inhibitors, there has been considerable interest in the synthesis and evaluation of nonclassical inhibitors, which could enter cells via passive diffusion and are not substrates for folypolyglutamate synthetase. A series of eight nonclassical 6‐substituted 2‐amino‐4‐oxo‐pyrrolo[2,3‐d]pyrimidines 2a‐2h were designed as potential inhibitors of thymidylate synthase. The synthesis of the target compounds 2a‐2h was achieved via regioselective iodination at the 6‐position of 5 , palladium‐catalyzed coupling with the appropriate phenylacetylenes, reduction of the C8‐C9 triple bond followed by saponification. Preliminary biological results indicated that none of the target compounds showed inhibitory activities against thymidylate synthase from Escherichia coli, Lactobacillus casei, rat or human thymidylate synthase at the concentrations tested. None of the target compounds showed inhibitory activity against dihydrofolate reductase from Escherichia coli, Lactobacillus casei, rat or human at 3.0 × 10?5 M. However, 50% inhibition of dihydrofolate reductase from Pneumocystis carinii and from Toxoplasma gondii was achieved with compound 2d and with compound 2g at 3.0 × 10?5 M.  相似文献   

3.
O-Alkylation of 8-hydroxy-1H-quinolin-2-one ( 1 ) afforded 8-(2-oxopropoxy)-1H-quinolin-2-one ( 2 ) which was immediately cyclized to form the tricyclic 2,3-dihydro-3-hydroxy-3-methyl-5H-pyrido[1,2,3-de][1,4]benzoxazine,-5-one ( 3). The Reformatsky-type condensation of 3 furnished antiplatelet 8-[(2,3,4,5-tetrahydro-2-methyl-4-methylidene-5-oxofuran-2-yl)melhoxy]-1H-quinolin-2-one ( 4 ). Its counterparts 7a – f , Ph-substituted at C(2) of the furan ring, were obtained from 1 via alkylation and the Reformatsky-type condensation. Although compound 4 was less active against platelet aggregation than 7a – f , it was the only compound which exhibited significant inhibitory activity on high-K+ medium, Ca2+-induced vasoconstriction and was more active than most of its Ph-substituted counterparts against norepinephrine-induced vasoconstrictions.  相似文献   

4.
Cyclodehydrogenation of the benzalhydrazino derivatives 5 and 6 gave 6-cyano-7-(4-methoxyphenyl)- 2-phenyl-5-oxo-1,2,4-triazolo[1,5-a]pyrimidine (8) and 6-cyano-7-(4-methoxyphenyl)-4-methyl-2-phenyl- 5-oxo-1,2,4-triazolo[1,5-a]pyrimidine (9) respectively. Melhylation, acetylation and benzylation of 8 gave the corresponding N-methyl, acetyl and benzyl derivatives 10-12 . Methylation of 5 with dimethylsulfate gave 2-benzalhydrazino-5-cyano-3-methyl-6-(4-methoxyphenyl)-3,4-dihydropyrimidin-4-one (6) , of which the reaction with acetic anhydride in pyridine afforded the N-acetylbenzalhydrazino derivative 15 . The latter was also prepared from acetylation of 5 followed by medthylation with iodomethane. Acetylation of 5 with boiling acetic anhydride afforded the diacetyl derivative 16 , whereas its benzylation gave the mono-N-benzyl derivative 14 .  相似文献   

5.
Synthesis of 1,2,3,4-tetrahydro-5H-[1]benzopyrano[3,4-c]pyridin-5-ones via a Pechmann condensation of 3-carbethoxy-1-methyl-4-piperidone with various phenols is described. The limitations of this method are discussed. Synthesis of the parent ring system 3a via reduction of 1,2,3,4-tetrahydro-3-(phenylmethyl)-8-[(1-phenyl-1H-tetrazol-5-yl)oxy]-5H-[1]benzopyrano[3,4-c]pyridin-5-one ( 5 ) is also described.  相似文献   

6.
A one-pot procedure has been developed for the synthesis of substituted 2,3-dihydro-2-(6-(4-hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-7H-[1,2,4]triazolo[3,4-b] [1,3,4]thiadiazin-3-yl)phthalazine-1,4-diones by reaction of 3-(2-bromoacetyl)-4-hydroxy-6-methyl-2H-pyran-2-one, 4-amino-5-hydrazino-4H-[1,2,4]triazole-3-thiol, and phthalic anhydrides in acetic acid medium. Similarly, a one-pot, three-component synthetic procedure has been developed for substituted 3-[3-(N1-benzylidene-hydrazino)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-6-yl]-4-hydroxy-6-methyl-pyran-2-ones from 3-(2-bromoacetyl)-4-hydroxy-6-methyl-2H-pyran-2-one, 4-amino-5-hydrazino-4H-[1,2,4]triazole-3-thiol, and various aromatic aldehydes in absolute ethanol and a few drops of glacial acetic acid.

[Supplementary materials are available for this article. Go to the publisher's online edition of Synthetic Communications® for the following free supplemental resource(s): Full experimental and spectral details.]  相似文献   


7.
A series of seven nonclassical 2‐amino‐4‐oxo‐6‐substituted thieno[2,3‐d]pyrimidines 2‐8 and one classical N‐[4‐(2‐amino‐4‐oxo‐3,4‐dihydrothieno[2,3‐d]pyrimidin‐6‐ylmethyl)benzoyl]‐L‐glutamic acid 9 (Table I) were designed as the first in a series of 6‐substituted 6‐5 fused ring analogs as potential thymidylate synthase (TS) inhibitors and as antitumor agents. The target compounds were synthesized via a Heck coupling of appropriately substituted iodobenzenes and allyl alcohol followed by cyclization using cyanoacetate and sulfur powder to afford substituted thiophenes. The resulting thiophenes were then cyclocondensed with chloroformamidine hydrochloride to afford 2‐amino‐4‐oxo‐6‐substituted thieno[2,3‐d]pyrimidines 2‐8 and 26 . Hydrolysis of 26 followed by coupling with diethyl L‐glutamate afforded 28 . The classical analog 9 was obtained by hydrolysis of 28 . None of the target compounds inhibited human recombinant thymidylate synthase at 23 μm except 9 for which the IC50 value was 100 μm.  相似文献   

8.
Condensation of 4-amino-4H-1,2,4-triazole-3-thiol and 4-amino-6-methyl-3-sulfanyl-1,2,4-triazin-5(4H)-one with ethyl cyanoacetate gave ethyl [1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-6-ylacetate and ethyl 3-methyl-4-oxo-4H-[1,3,4]thiadiazolo[2,3-c][1,2,4]triazin-7-ylacetate, respectively. Reactions of the condensation products with 1,3-diphenylprop-2-en-1-one, aromatic aldehydes, and carbon disulfide or N,N-dimethylformamide dimethyl acetal (followed by treatment with hydrazine hydrate) gave the corresponding 6-hetaryl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazoles and 7-hetaryl-3-methyl-4H-[1,3,4]thiadiazolo[2,3-c][1,2,4]triazin-4-ones. Preliminary tests revealed fungicidal activity of the pyrazolyl-substituted derivatives. Published in Russian in Zhurnal Organicheskoi Khimii, 2007, Vol. 43, No. 12, pp. 1813–1818. The text was submitted by the authors in English.  相似文献   

9.
The synthesis of six analogues of the potent thymidylate synthase (TS) inhibitor N -[4-[ N -[(3,4-dihydro-2-methyl-4-oxo-6-quinazolinoyl)-methyl]- N -prop-2-ynylamino]benzoyl]- L -glutamic acid 2 is described in which the glutamic acid residue has been replaced by DL -aminophosphonic acids. New antifolates were tested as inhibitors of TS isolated from mouse L1210 leukemic cells as well as inhibitors of growth mouse leukemic L5178Y cells. In general these modifications result in compounds that are considerably less potent than 2 as TS inhibitors with K i 's 0.17-1.10 w M. Very poor solubility in water limited their proper assay of growth cells inhibition.  相似文献   

10.
The syntheses of 3-amino-4-methyl-1-(β-D-ribofuranosyl)-1,2,4-triazolin-5-one ( 8a ) and its 2′-deoxy analog 8b as well as 5-amino-2-methyl-1-(β-D-ribofuranosyl)-1,2,4-triazolin-3-one ( 12 ) have been accomplished. Compounds 8a and 8b were synthesized via glycosylation of 3-bromo-5-nitro-1,2,4-triazole which was followed by replacement in three steps of the 3-bromo function to yield 3-nitro-1-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)-1,2,4-triazolin-5-one ( 4a ) and its 2′-deoxy analog 4b . Compounds 4a and 4b were methylated at N2, hydrogenated and deblocked to give 3-amino-4-methyl-1-(β-D-ribofuranosyl)-1,2,4-triazolin-5-one ( 8a ) and the 2′-deoxy analog 8b . Compound 12 was synthesized by glycosylation of 3-amino-1-methyl-1,2,4-triazolin-5(2H)-one ( 10 ). The structures of 8b and 12 were confirmed by single crystal X-ray diffraction analysis.  相似文献   

11.
Isatoic anhydride ( 1a ) and 5-chloroisatoic anhydride ( 1b ) were treated with 2-(1-methylhydrazino)ethanol ( 2 ) to produce 2-aminobenzoic acid 2-(2-hydroxyethyl)-2-methylhydrazide ( 3a ) and its 5-chloro analog 3b , respectively. Treatment of 3a and 3b with carbon disulfide gave, respectively, 2,3-dihydro-3-[(2-hydroxyethyl)methylamino]-2-thioxo-4-(1H)quinazolinone ( 4a ) and its 6-chloro analog 4b . Compounds 4a and 4b afforded 5,6-dihydro-5-methyl-2-thioxo-4H,8H-[1,3,5,6]oxathiadiazocino[4,5-b]quinazolin-8-one ( 5a ) and its 10-chloro analog 5b , respectively, upon treatment with thiophosgene. Compound 5a could be produced directly from 3a and thiophosgene. Treatment of 4a and 4b with trifluoroacetic anhydride followed by potassium carbonate gave 3,4-dihydro-4-methyl-2H,6H-[1,3,4]thiadiazino[2,3-b]quinazolin-6-one ( 7a ) and its 8-chloro analog 7b , respectively. Treatment of 4a with thionyl chloride also gave 7a , but 4b and thionyl chloride afforded a mixture of 7b and 8-chloro-3,4-dihydro-4-methyl-2H,6H-[1,3,4]oxadiazino[2,3-b]quinazolin-6-one ( 10 ). The dimethyl analogs of 4a and 4b ( 13a and 13b ) upon treatment with thiophosgene afforded 3,4-dihydro-2,2,4-trimethyl-2H,6H-[1,3,4]oxadiazino[2,3-b]quinazolin-6-one ( 14a ) and its 8-chloro analog 14b , respectively.  相似文献   

12.
Reactions of 3,4-dichloro-N-R-maleimides with substituted thiouracils at 40°C gave a 1:1 mixture of isomers of pyrrolothiazolopyrimidinetriones. Under conditions of thermodynamic control (100°C, 5 h) only pyrrolo[3',4':4,5]thiazolo[3,2-a]pyrimidine-4,6,8-triones were formed, hydrolysis of which followed by decarboxylation gave 5-oxo-5H-thiazolo[3,2-a]pyrimidine-2-carboxamide. The structure of N2-phenyl-6-methyl-5-oxo-5H-thiazolo[3,2-a]pyrimidine-2-carboxamide was confirmed by X-ray crystallography. Analogous cyclization of 3,4-dichloro-N-R-maleimides with 2-thioxoquinazol-4-one also gave a mixture of two isomers which were successfully separated by fractional crystallization.  相似文献   

13.
Reaction of 2-(3-hydroxy-3-methyl-1-butynyl)adamantan-2-ol with acetonitrile under Ritter reaction conditions is accompanied by isomerization and partial hydration where the water addition to the triple bond occurs nonselectively. As a result of reaction carried out in the presence of 8 equiv of sulfuric acid a mixture was obtained of N 2-[4-(1-acetylamino-2-adamantyl)-2-methyl-3-butyn-2-yl]acetamide, N 3-[1-(1-acetylamino-2-adamantyl)-3-methyl-2-oxo-3-butyl]-acetamide, and N 3-[1-(1-acetylamino-2-adamantyl)-3-methyl-1-oxo-3-butyl]acetamide in ~10:3:2 ratio. In the presence of 2 equiv of the acid the mixture obtained consisted of N 2-[4-(1-acetylamino-2-adamantyl)-2-methyl-3-butyn-2-yl]acetamide, N 3-[1-(1-acetylamino-2-adamantyl)-3-methyl-2-oxo-3-butyl]acetamide, and 1-(1-acetylamino-2-adamantyl)-3-methyl-2-buten-1-one in the same ratio. In Rupe reaction conditions we obtained instead of the expected ,-unsaturated ketones a mixture of 1-(1-hydroxy-2-adamantyl)-3-hydroxy-3-methylbutan-1-one and 1-(1-hydroxy-2-adamantyl)-3-hydroxy-3-methylbutan-2-one in a 5:3 ratio.  相似文献   

14.
The ring-closure reactions of N-(3,4-dimethoxyphenylthiomethyl)-2-nitrobenzamide derivatives 5a,b with phosphoryl chloride gave 4-(2-nitrophenyl)-2H1,3-benzothiazine derivatives 7a,b , which on reduction yielded 4-(2′-aminophenyl)-3,4-dihydro-2H-1,3-benzothiazines 8a,b. Reaction of these compounds with phosgene led to a new heterocyclic ring system, 6H,8H-quinazolino[3,4-c][1,3]benzothiazine derivatives 9a,b. The structures of the title compounds were proved via their ir and nmr (1H, 13C) spectra.  相似文献   

15.
4-Methyl- and 4-benzyl-5-aminoisoquinolin-1-ones are close analogues of the water-soluble PARP-1 inhibitor 5-AIQ. Their synthesis was approached through Pd-catalysed cyclisations of N-(2-alkenyl)-2-iodo-3-nitrobenzamides. Reaction of N,N-diallyl-2-iodo-3-nitrobenzamide with Pd(PPh3)4 gave a mixture of 2-allyl-4-methyl-5-nitroisoquinolin-1-one and 2-allyl-4-methylene-5-nitro-3,4-dihydroisoquinolin-1-one. N-Benzhydryl-N-cinnamyl-2-iodo-3-nitrobenzamide similarly gave 2-benzhydryl-4-benzyl-5-nitroisoquinolin-1-one and 2-benzhydryl-4-benzylidene-5-nitro-3,4-dihydroisoquinolin-1-one. The isomeric products are not interconvertible. A deuterium-labelling study indicated that the isomers were formed by different pathways: a π-allyl-Pd route and the classical Heck route. The corresponding secondary amides N-allyl-2-iodo-3-nitrobenzamide and N-((substituted)-cinnamyl)-2-iodo-3-nitrobenzamide gave good yields of the required 4-methyl- and 4-((substituted)-benzyl)-5-nitroisoquinolin-1-ones, respectively, under optimised conditions (Pd(PPh3)4, Et3N, Bu4NCl, 150 °C, rapid heating). Hydrogenation of the nitro groups gave 4-methyl- and 4-benzyl-5-aminoisoquinolin-1-ones, which were potent inhibitors of PARP-1 activity.  相似文献   

16.
A series of ten novel 2‐amino‐4‐oxo‐5‐[(substitutedbenzyl)thio]pyrrolo[2,3‐d]pyrimidines 2‐11 were synthesized as potential inhibitors of thymidylate synthase and as antitumor agents. The analogues contain various electron withdrawing and electron donating substituents on the benzylsulfanyl ring of the side chains and were synthesized from the key intermediate 2‐amino‐4‐oxo‐6‐methylpyrrolo[2,3‐d]pyrimidine, 14 . Appropriately substituted benzyl mercaptans were appended to the 5‐position of 14 via an oxidative addition reaction using iodine, ethanol and water. The compounds were evaluated against human, Escherichia coli and Toxoplasma gondii thymidylate synthase and against human, Escherichia coli and Toxoplasma gondii dihydrofolate reductase. The most potent inhibitor, ( 6 ) which has a 4′‐methoxy substituent on the side chain, has an IC50=25 μM against human thymidylate synthase. Contrary to analogues of general structure 1 , electron donating or electron withdrawing substituents on the side chain of 2‐11 had little or no influence on the human thymidylate synthase inhibitory activity.  相似文献   

17.
4,8-Dimethyl-6,7,8,9-tetrahydropyrido[4′,3′:4,5]thieno[2,3-e][1,2,4]triazolo[3,4-a]-4H-pyrimidin-5-ones, 7-methyl-2,3,6,7,8,9-hexahydropyrido[4′,3′:4,5]thieno[2,3-d]pyrrolo[1,2-a]-1H, 10H-pyrimidin-10-one, 8-methyl-1,2,3,4,7,8,9,10-octahydropyrido[4′,3′:4,5]thieno[2,3-d]-11H-pyrimidin-11-one, and 9-methyl-2,3,4,5,8,9,10,11-octahydro[4′,3′:4,5]thieno[2,3-d]azepino-[1,2-a]-1H, 12H-pyrimidin-12-one which consist four new heterocyclic ring systems were synthesized from 2-amino-3-carbethoxy-5-methyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine.  相似文献   

18.
A number of N- and C-alkyl derivatives of selected guanine analogs have been synthesized as potential antiviral agents. n-Pentyl, n-hexyl and 6-hydroxyhexyl derivatives in the imidazo[1,2-α]-s-triazine, 9–11 , imid-azo[1,2-α]pyrimidine, 13–17 , and thiazolo[4,5-d]pyrimidine, 19–21, ring system have been prepared by the direct alkylation of the sodium salt of the appropriate aglycon with the respective alkylbromides. Dehydra-tive coupling of 3-amino-6-hydrazino-1,2,4-triazin-5(4H)-one ( 22 ) with either hexanoic acid or heptanoic acid, and further ring closure of the reaction products 24a and 24b provided the n-pentyl and n-hexyl derivatives of 6-amino-1,2,4-triazolo[3,4-f][1,2,4]triazin-8(7H)-one 25a and 25b , respectively. A similar condensation of 3-amino-6-aminomethyl-1,2,4-triazin-5(4H)-one ( 23 ) with heptanoic acid, followed by ring annulation, readily gave 2-amino-7-n-hexylimidazo[5,1-f][1,2,4]triazin-4(3H)-one ( 25c ). Bromination of 25c with N-bromosuccini-mide afforded the corresponding 5-bromo derivative 26 . Alkylation of the in situ generated sodium salt of 4-methoxycarbonylmethyl-5-methoxycarbonyl-2-oxo-1H,3H-imidazole ( 27 ) with 1-bromohexane gave the N-1 alkylated product 31 . Manipulation of the functional groups in 31 and further hydrazine mediated ring annulation furnished 5,6-diamino-1-n-hexyl-3-methylimidazo[4,5-c]pyridine-2,4-dione ( 39 ). Catalytic hydrogena-tion of 39 gave 7-methyl-8-oxo-9-hexyl-3-deazaguanine ( 40 ), a congener of the immunostimulator 7-methyl-8-oxoguanosine.  相似文献   

19.
A series of novel N-benzylcarboxamide derivatives of bicyclic compounds, 3,4-dihydropyrido[3,2-f][1,4]oxazepin-5(2H)-one and 2,3,4,5-tetrahydro-6H-pyrido[2,3-b][1,5]oxazocin-6-one, were synthesized by cyclization of N-benzyl-2-chloro-N-(2-hydroxyethyl)- [and -(3-hydroxypropyl)-] nicotinamides, respectively. Atropisomerism was observed in 5-[3,5-bis(trifluoromethyl)benzyl]-7-phenyl-2,3,4,5-tetrahydro-6H-pyrido[2,3-b][1,5]oxazocin-6-ones due to steric hindrance of the carboxamide moiety and restriction of its rotation. Cyclization of N-[3,5-bis(trifluoromethyl)benzyl]-2-chloro-N-[(2S)-3-hydroxy-2-methylpropyl]-5-methyl-4-phenylnicotinamide gave (3S)-5-[3,5-bis(trifluoromethyl)benzyl]-3,8-dimethyl-7-phenyl-2,3,4,5-tetrahydro-6H-pyrido[2,3b][1,5]oxazocin-6-one, which exists predominantly in the thermodynamically stable aR-conformer in CDCl3. This compound showed excellent NK1-antagonistic activity with IC50 value (in vitro inhibition of [125I]-Bolton-Hunter-substance P binding in human IM-9 cells) of 0.47 nM, which is ca. 200-fold more potent than that of its enantiomer, indicating that the atropisomer chirality affects NK1-receptor recognition.  相似文献   

20.
N-Allyl- and N-[(Cyclopropyl)methyl]-3,4-dimethoxy-5-methylmorphinan-6-one ( 9 and 10, resp.) were synthesized from 5-methyldih drothebainone ( 1 ). This essential intermediate was prepared from the baine via 5-methylthebaine (5) employing a novel route. The Pharmacological studies showed 9 and 10 to be potent opioid agonists. Compound 10 was found to have preference for kappa rather than mu opioid receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号