首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We describe the synthesis of a highly water‐soluble cryptophane 1 that can be seen as a universal platform for the construction of 129Xe magnetic resonance imaging (MRI)‐based biosensors. Compound 1 is easily functionalized by Huisgen cycloaddition and exhibits excellent xenon‐encapsulation properties. In addition, 1 is nontoxic at the concentrations typically used for hyperpolarized 129Xe MRI.  相似文献   

2.
3.
Shatruk and Alabugin propose an alternative structural model for the observed electron density that we have attributed to the photochemical formation of 1,3‐dimethylcyclobutadiene in a protective solid crystalline matrix. The main criticism from Shatruk and Alabugin concerns the modeling of the disorder in the calixarene cavity and in particular the neglect of a residual electron density close to the O1 atom. We published (Chem. Eur. J. 2011 , 17, 10021) our opinion concerning this “ignored peak” in the Supporting Information of the paper. The current response to the Correspondence demonstrates that Shatruk and Alabugin have over‐modeled our data by assigning a small electron density peak, which is hardly more than the density corresponding to a hydrogen atom, to an under‐occupied oxygen site, using inappropriate refinement contraints.  相似文献   

4.
β‐nuclear magnetic resonance (NMR) spectroscopy is highly sensitive compared to conventional NMR spectroscopy, and may be applied for several elements across the periodic table. β‐NMR has previously been successfully applied in the fields of nuclear and solid‐state physics. In this work, β‐NMR is applied, for the first time, to record an NMR spectrum for a species in solution. 31Mg β‐NMR spectra are measured for as few as 107 magnesium ions in ionic liquid (EMIM‐Ac) within minutes, as a prototypical test case. Resonances are observed at 3882.9 and 3887.2 kHz in an external field of 0.3 T. The key achievement of the current work is to demonstrate that β‐NMR is applicable for the analysis of species in solution, and thus represents a novel spectroscopic technique for use in general chemistry and potentially in biochemistry.  相似文献   

5.
6.
7.
8.
A dideoxyribonucleotide, 2′-amino-2′-deoxyuridylyl 3′,5′-deoxyuridine, containing an unsual base (2′-amino-2′-deoxyuridine) that isresistant to nucleases was investigated by ′H NMR. The pKa of the protonation of the amino group (5.8) was determined by profiles of chemical shifts of protons in the vicinity of amino group versus pH. However, protonation of the amino group has little effect on the conformation of the dimer, assumed to be B-form DNA. This conclusion is drawn from the chemical shift data and coupling constants of H1-H2. Thus, 2′-amino-2′-deoxyuridine can be used in antisense and anticode oligonucleotides.  相似文献   

9.
10.
Theranostic agents for concurrent cancer therapy and diagnosis have begun attracting attention as a promising modality. However, accurate imaging and identification remains a great challenge for theranostic agents. Here, we designed and synthesized a novel theranostic agent H6M based on the “double-locked” strategy by introducing an electron-withdrawing nitro group into 1-position of a pH-responsive 3-amino-β-carboline and further covalently linking the hydroxamic acid group, a zinc-binding group (ZBG), to the 3-position of β-carboline to obtain histone deacetylase (HDAC) inhibitory effect for combined HDAC-targeted therapy. We found that H6M can be specifically reduced under overexpressed nitroreductase (NTR) to produce H6AQ, which emits bright fluorescence at low pH. Notably, H6M demonstrated a selective fluorescence imaging via successive reactions with NTR (first “key”) and pH (second “key”), and precisely identified tumor margins with a high S/N ratio to guide tumor resection. Finally, H6M exerted robust HDAC1/cancer cell inhibitory activities compared with a known HDAC inhibitor SAHA. Therefore, the NTR/pH-activated theranostic agent provided a novel tool for precise diagnosis and efficient tumor therapy.  相似文献   

11.
Inhibitors of the p53‐MDM2 protein–protein interaction are emerging as a new and validated approach to treating cancer. Herein, we describe the synthesis and inhibitory evaluation of a series of isoquinolin‐1‐one analogues, and highlight the utility of an initial growth‐rates saturation‐transfer difference (STD) NMR approach supported by protein–ligand docking to investigate p53‐MDM2 inhibition. The approach is illustrated by the study of compound 1 , providing key insights into the binding mode of this kind of MDM2 ligands and, more importantly, readily unveiling the previously proposed three‐finger pharmacophore requirement for p53‐MDM2 inhibition.  相似文献   

12.
Although numerous reports on the synthesis of atom‐specific 15N‐labeled nucleosides exist, fast and facile access to the corresponding phosphoramidites for RNA solid‐phase synthesis is still lacking. This situation represents a severe bottleneck for NMR spectroscopic investigations on functional RNAs. Here, we present optimized procedures to speed up the synthesis of 15N(1) adenosine and 15N(1) guanosine amidites, which are the much needed counterparts of the more straightforward‐to‐achieve 15N(3) uridine and 15N(3) cytidine amidites in order to tap full potential of 1H/15N/15N‐COSY experiments for directly monitoring individual Watson–Crick base pairs in RNA. Demonstrated for two preQ1 riboswitch systems, we exemplify a versatile concept for individual base‐pair labeling in the analysis of conformationally flexible RNAs when competing structures and conformational dynamics are encountered.  相似文献   

13.
The performance of chloride‐selective electrodes based on “two‐wall” aryl‐extended calix[4]pyrroles and multiwall carbon nanotubes is presented. The calix[4]pyrrole receptors bear two phenyl groups at opposite meso‐positions. When the meso‐phenyl groups are decorated with strong electron‐withdrawing substituents, attractive anion–π interactions may exist between the receptor’s aromatic walls and the sandwiched anion. These anion–π interactions are shown to significantly affect the selectivity of the electrodes. Calix[4]pyrrole, bearing a p‐nitro withdrawing group on each of the meso‐phenyl rings, afforded sensors that display anti‐Hofmeister behavior against the lipophilic salicylate and nitrate anions. Based on the experimental data, a series of principles that help in predicting the suitability of synthetic receptors for use as anion‐specific ionophores is discussed. Finally, the sensors deliver excellent results in the direct detection of chloride in bodily fluids.  相似文献   

14.
We have observed the generation of sumanenylidene ( 2 ), a divalent, neutral‐carbon species at the benzylic position of sumanene ( 1 ). We also clarified both experimentally and theoretically that the ground state of compound 2 was a triplet state and that its singlet–triplet energy gap (ΔEST) was similar to that in fluorenylidene. The curved structure of compound 2 led to slightly better spin delocalization over the two adjacent aromatic rings than in planar systems, because of the unpaired spins on the σ and π orbitals. Synthetic application of the carbene precursor, diazosumanene ( 5 ), with a variety of thiocarbonyl compounds revealed its utility for the preparation of tetrasubstituted alkene compounds (e.g., that contain a strongly electron‐donating unit) that are directly conjugated to the sumanene ( 1 ) moiety.  相似文献   

15.
16.
A versatile polycation scaffold that can easily be modified with targeting ligands has been designed, synthesized, and characterized. A series of galactose‐containing polymers has been produced to demonstrate the ease of modification of this polynucleotide delivery vehicle motif via the click reaction and to study how various structural modifications affect recognition by ASGPr on hepatocytes. A small library of structures was created where DCS and alkyl spacer length between the targeting group and the polymer backbone was varied. The novel polymer scaffold described proves to be a valuable tool for understanding structure/activity relationships of complexes made with receptor‐targeted polymers.

  相似文献   


17.
This paper aims at reporting on the synthesis of a heterograft copolymer by combining the “grafting onto” process based on atom transfer radical addition (ATRA) and the “grafting from” process by atom transfer radical polymerization (ATRP). The statistical copolymerization of ε‐caprolactone (εCL) and α‐chloro‐ε‐caprolactone (αClεCL) was initiated by 2,2‐dibutyl‐2‐stanna‐1,3‐dioxepane (DSDOP), followed by ATRA of parts of the chlorinated units of poly(αClεCL‐co‐εCL) on the terminal double bond of α‐MeO,ω‐CH2?CH? CH2? CO2‐poly(ethylene oxide) (PEO). The amphiphilic poly(εCL‐g‐EO) graft copolymer collected at this stage forms micelles as supported by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The unreacted pendant chloro groups of poly(εCL‐g‐EO) were used to initiate the ATRP of styrene with formation of copolymer with two populations of randomly distributed grafts, that is PEO and polystyrene. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6015–6024, 2006  相似文献   

18.
A recently developed theory of steady-state conduction in high-density polyethylene is applied to “pure” polypropylene (PP) in the temperature range 50–93°C. Morphological changes occur in PP, including a disordered-amorphous to monoclinic-amorphous transition between 50 and 80°C, where, with increasing temperature T, free volume increases, and decreases with decreasing amorphous fraction. The latter competing processes lead to large increases in hopping site separation, λ, in the transition region, followed either by saturation or a maximum in λ vs. T. We speculate that segmental and/or main chain molecular motions lower apparent activation energies, are “pinned“ by applied field, and impeded by dangling bonds in regions surrounding the surfaces of crystallites. Our analysis is semi-quantitative only, because the latter mechanisms have not been adequately quantified, and the relative contributions of each are unknown. Measurements were carried out on heated and cooled disordered-amorphous, and 106°C, 17-h annealed, 43% crystalline samples. Hopping distances, obtained from measured current vs. applied field characteristics, ranged from 1.2 to 5.2 nm. Apparent activation energies up to 1.80 eV were obtained from In (I/T) vs. (1/T) plots. Remarkable plateaus in the temperature range of the transition were observed in these plots, implying some carrier conduction with near zero activation energy. Possible explanations for the latter, and the electronic nature of the carriers are given. X-ray and density flotation measurements enabled crystallinity determinations. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号