首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We report the synthesis of unidirectional light‐driven rotary molecular motors based on chiral overcrowded alkenes and their immobilisation on the surface of gold nanoparticles through two anchors. Using a combination of 1H and 13C NMR, UV/Vis and CD spectroscopy, we show that these motors preserve their photochemical and thermal behaviour after they have been attached to gold nanoparticles. Furthermore, we describe the synthesis of 2H‐ and 13C‐labelled derivatives that were used to verify the unidirectionality of the rotary cycle of these motors both in solution and while grafted to gold nanoparticles. Taken together, these data support the conclusion that these motors maintain their unidirectional rotary cycle when grafted to the surface of small (ca. 2 nm) gold nanoparticles. Thus, continuous irradiation of the system under appropriate conditions leads to unidirectional rotation of the upper half of the molecules relative to the entire nanoparticle.  相似文献   

3.
4.
5.
6.
7.
自组装分子电子器件   总被引:3,自引:0,他引:3  
自组装技术是解决有机功能分子与电极连接问题最有希望的技术之一,近-来在构筑分子电子器件中得到了越来越多的应用,成为分子电子学发展的一个重要方向.本文介绍了自组装技术在制备分子器件中的应用.并讨论了自组装分子器件的前景和面临的一些问题.  相似文献   

8.
9.
A proton-fuelled DNA nanomachine   总被引:5,自引:0,他引:5  
  相似文献   

10.
在适当的条件下分子开关将输入的信息转换为输出信号,利用这一特点,可在分子体系根据二进位布尔逻辑规则实现信号转换。目前,用化学体系进行基本的布尔逻辑功能执行 (PASS、YES、NOT、AND、NAND、OR、NOR、XNOR和INH)都已成为可能。在此基础上,逻辑门的整合与编程,以及更进一步的复杂分子运算开始受到人们的关注。迄今为止,以高灵敏性的荧光输出信号为主,人们在分子水平上设计实现了多种复杂的逻辑电路,包括组合逻辑电路和时序逻辑电路等,并开始涉及信息处理的安全平台设计。本文主要介绍了近年来利用分子荧光开关体系模拟数字逻辑电路过程中所取得的最新进展,对分子逻辑电路研究的热点和问题进行了展望。  相似文献   

11.
12.
13.
Non-equilibrium chemical systems underpin multiple domains of contemporary interest, including supramolecular chemistry, molecular machines, systems chemistry, prebiotic chemistry, and energy transduction. Experimental chemists are now pioneering the realization of artificial systems that can harvest energy away from equilibrium. In this tutorial Review, we provide an overview of artificial molecular ratchets: the chemical mechanisms enabling energy absorption from the environment. By focusing on the mechanism type—rather than the application domain or energy source—we offer a unifying picture of seemingly disparate phenomena, which we hope will foster progress in this fascinating domain of science.  相似文献   

14.
Molecular interlocked systems with mechanically trapped components can serve as versatile building blocks for dynamic nanostructures. Here we report the synthesis of unprecedented double‐stranded (ds) DNA [2]‐ and [3]rotaxanes with two distinct stations for the hybridization of the macrocycles on the axle. In the [3]rotaxane, the release and migration of the “shuttle ring” mobilizes a second macrocycle in a highly controlled fashion. Different oligodeoxynucleotides (ODNs) employed as inputs induce structural changes in the system that can be detected as diverse logically gated output signals. We also designed nonsymmetrical [2]rotaxanes which allow unambiguous localization of the position of the macrocycle by use of atomic force microscopy (AFM). Either light irradiation or the use of fuel ODNs can drive the threaded macrocycle to the desired station in these shuttle systems. The DNA nanostructures introduced here constitute promising prototypes for logically gated cargo delivery and release shuttles.  相似文献   

15.
Taken to the molecular level, the concept of “tweezers” opens a rich and fascinating field at the convergence of molecular recognition, biomimetic chemistry and nanomachines. Composed of a spacer bridging two interaction sites, the behaviour of molecular tweezers is strongly influenced by the flexibility of their spacer. Operating through an “induced‐fit” recognition mechanism, flexible molecular tweezers select the conformation(s) most appropriate for substrate binding. Their adaptability allows them to be used in a variety of binding modes and they have found applications in chirality signalling. Rigid spacers, on the contrary, display a limited number of binding states, which lead to selective and strong substrate binding following a “lock and key” model. Exquisite selectivity may be expressed with substrates as varied as C60, nanotubes and natural cofactors, and applications to molecular electronics and enzyme inhibition are emerging. At the crossroad between flexible and rigid spacers, stimulus‐responsive molecular tweezers controlled by ionic, redox or light triggers belong to the realm of molecular machines, and, applied to molecular tweezing, open doors to the selective binding, transport and release of their cargo. Applications to controlled drug delivery are already appearing. The past 30 years have seen the birth of molecular tweezers; the next many years to come will surely see them blooming in exciting applications.  相似文献   

16.
Alkyl chains can adopt seemingly unusual conformations, such as helices, when bound to natural and synthetic hydrophobic receptors. This plasticity allows the alkanes to assume shapes that are congruent to the receptor's space and fill that space properly. We describe here the use of cavitands and capsules as tools that expose the forces involved in the molecular recognition of hydrocarbons. Studies using NMR spectroscopy reveal how attractive interactions and solvophobic forces are maximized in solution through unprecedented contortions of alkanes and hint at a new generation of nanoscale mechanical devices.  相似文献   

17.
18.
Amphiphilic coil‐rod‐coil molecules, incorporating flexible and rigid blocks, have a strong affinity to self‐organize into various supramolecular aggregates in bulk and in aqueous solutions. In this paper, we report the self‐assembling behavior of amphiphilic coil‐rod‐coil molecular isomers. These molecules consist of biphenyl and phenyl units connected by ether bonds as the rod segment, and poly(ethylene oxide) (PEO) with a degree of polymerization of 7 and 12 as the flexible chains. Their aggregation behavior was investigated by differential scanning calorimetry, thermal optical polarized microscopy, small‐angle X‐ray scattering spectroscopy, and transmission electron microscopy. The results imply that the molecular structure of the rod building block and the length of the PEO chains dramatically influence the creation of supramolecular aggregates in bulk and in aqueous solutions. In the bulk state, these molecules self‐organize into a hexagonal perforated lamellar and an oblique columnar structure, respectively, depending on the sequence of the rod building block. In aqueous solution, the molecule with a linear rod segment self‐assembles into sheet‐like nanoribbons. In contrast, its isomer, with a rod building block substituted at the meta‐position of the aryl group, self‐organizes into nanofibers. This is achieved through the control of the non‐covalent interactions of the rod building blocks.  相似文献   

19.
The monitoring of molecular systems usually requires sophisticated technologies to interpret nanoscale events into electronic‐decipherable signals. We demonstrate a new method for obtaining read‐outs of molecular states that uses graphics processing units made from molecular circuits. Because they are made from molecules, the units are able to directly interact with molecular systems. We developed deoxyribozyme‐based graphics processing units able to monitor nucleic acids and output alphanumerical read‐outs via a fluorescent display. Using this design we created a molecular 7‐segment display, a molecular calculator able to add and multiply small numbers, and a molecular automaton able to diagnose Ebola and Marburg virus sequences. These molecular graphics processing units provide insight for the construction of autonomous biosensing devices, and are essential components for the development of molecular computing platforms devoid of electronics.  相似文献   

20.
卟啉类化合物分子光电器件研究进展   总被引:2,自引:1,他引:1  
分子电子器件是未来分子电路的微电子元件,已成为有机功能纳米材料研究的热点。 卟啉类化合物的π共轭体系表现出的独特光电性能和良好的热稳定性,使其作为光电器件、模拟生物酶、分子识别和传感材料在材料化学、医学、生物化学和分析化学等领域展现出良好的应用前景,由于卟啉分子平面结构的易修饰性,常用卟啉化合物组装单元来构建功能化的卟啉光电器件。 本文综述了卟啉类化合物的特点及其在光电器件中的应用进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号