首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liquid chromatographic (LC) type trace enrichment is coupled online with capillary gas chromatography (GC) with mass spectrometric (MS) detection for the analysis of aqueous samples. A volume of 1–10 ml of an aqueous sample is preconcentrated on a trace-enrichment column packed with a polymeric stationary phase. After cleanup with HPLC-grade water the precolumn is dried with nitrogen and subsequently desorbed with ethyl acetate. A fraction of 60 μl is introduced on-line into a diphenyltetramethyldisilazane-deactivated retention gap under partially concurrent solvent evaporation conditions and using an early solvent vapor exit. The analytes are separated and detected by means of GC–MS. The potential of the LC–GC–MS system for monitoring organic pollutants in river and drinking water is studied. Target analysis is carried out with atrazine and simazine as model compounds; the detection limits achieved under full-scan and multiple ion detection conditions are 30 pg and 5 pg, respectively. Identification of unknown compounds (non-target analysis), is demonstrated using a river water sample spiked with 168 pollutants varying in polarity and volatility.  相似文献   

2.
Partially concurrent eluent evaporation presupposes an eluent evaporation rate in the GC pre-column that approaches the LC flow rate. Discharging the vapors through the whole GC column, evaporation rates reach 10–30 μl/min, i.e. are suitable just for LC flow rates typical for packed capillary LC columns. With an early vapor exit, evaporation rates are increased to 100–200 μl/min (under extreme conditions to some 800 μl/min), thus fitting the LC flow rates of 2 mm i.d. columns. Evaporation rates were measured for a standard set of pre-columns and conditions. The dependence of the evaporation rate on temperature, inlet pressure, carrier gas, and internal diameter of the retaining pre-column are discussed in order to allow the design of a GC system producing a desired evaporation rate.  相似文献   

3.
The following paper presents a fast, selective, sensitive, and automated procedure for the residue analysis of the pyrethroid insecticide acrinathrin in various fruit samples by on-line combination of Liquid Chromatography (LC) with capillary Gas Chromatography (GC) and an Electron-Capture Detector (ECD). The loop-type interface and Fully Concurrent Solvent Evaporation (FCSE) were chosen due to their ease of use and low volatility of acrinathrin. Commercially available LC diol columns with small internal diameters (2.1 mm) provided the selectivity required for the separation of the solute from matrix components and permitted the transfer of fraction volumes up to 500 μl into the retention gap, located inside the gas chromatograph. Optimization of the operating conditions with standard solutions showed the influence of the GC initial transfer temperature on the response of acrinathrin and the quantitative nature of the transfer was established by liquid scintillation counting. The linearity and precision were studied with the aid of calibration plots, whereas quantitative recoveries of the analyte (at least 95 %) were determined in spiked fruits. Compared to the corresponding off-line technique, the on-line approach allows us to reach lower detection limits (ppb level when 20 μl LC injections are performed) with excellent repeatability between 0.6 and 6.6 %. Moreover, the integrated analytical set-up is robust, less time-consuming and subsequently brings a marked improvement in the sample preparation step of complex biological matrices. Finally, the versatility of the system renders it highly suitable for the determination of other similar pyrethroids in order to develop a multiresidue method.  相似文献   

4.
The applicability of a liquid-liquid extraction system which is coupled on-line with a capillary gas chromatograph was studied for environmental and ecotoxicological analyses. The optimized and automated system was used for the determination of apolar and rather non-volatile organic compounds in aqueous samples. Relevant aspects of sample introduction, phase separation and selection of extraction solvent are discussed. Three routine-tipe applications are described, viz. an improved method for the determination of hexachlorocyclohexanes in ground water and the determination of the so-called NCC-ether and ACC-ether in ecotoxicological studies. Depending on the application studied, the concentration levels varied from 0.1 to 6000 μg/I, using ECD and/or FID detection. Typical coefficients of variation obtained with the total extraction–GC procedure were 2–25%. The system was found to be rugged, it saves time compared with set-ups involving off-line liquid-liquid extraction and considerably reduces the manual work load.  相似文献   

5.
A coupled LC‐GC method for the analysis of carbazole‐type PANH has been developed and evaluated. Group separation and isolation of carbazoles from interfering acridines in a complex sample matrix was accomplished by using a back‐flush technique and an in situ end‐capped dimethylaminopropyl silica column in the HPLC part of the system. On‐line injection of the carbazole fraction into the GC column was performed with a loop‐type interface utilizing concurrent solvent evaporation technique. An LOD of 1–3 pg of individual carbazole compounds was achieved by nitrogen selective detection using an NPD. The method is shown to be robust and is demonstrated by application to personal exposure measurement in an aluminum reduction plant.  相似文献   

6.
A new method based on off‐line coupling of LC with GC in replacement of conventional sample preparation techniques is proposed to analyze acrylamide in coffee brews. The method involves the preseparation of the sample by LC, the collection of the selected fraction, its concentration under nitrogen, and subsequent analysis by GC coupled with MS. The composition of the LC mobile phase and the flow rate were studied to select those conditions that allowed separation of acrylamide without coeluting compounds. Under the conditions selected recoveries close to 100% were achieved while LODs and LOQs equal to 5 and 10 μg/L for acrylamide in brewed coffee were obtained. The method developed enabled the reliable detection of acrylamide in spiked coffee beverage samples without further clean‐up steps or sample manipulation.  相似文献   

7.
For the first time a dispersive liquid–liquid microextraction method on the basis of an extraction solvent lighter than water was presented in this study. Three organophosphorus pesticides (OPPs) were selected as model compounds and the proposed method was carried out for their preconcentration from water samples. In this extraction method, a mixture of cyclohexane (extraction solvent) and acetone (disperser) is rapidly injected into the aqueous sample in a special vessel (see experimental section) by syringe. Thereby, a cloudy solution is formed. In this step, the OPPs are extracted into the fine droplets of cyclohexane dispersed into aqueous phase. After centrifuging the fine droplets of cyclohexane are collected on the upper of the extraction vessel. The upper phase (0.40 μL) is injected into the gas chromatograph (GC) for separation. Analytes were detected by a flame ionization detector (FID) (for high concentrations) or MS (for low concentrations). Some important parameters, such as the kind of extraction and dispersive solvents and volume of them, extraction time, temperature, and salt amount were investigated. Under the optimum conditions, the enrichment factors (EFs) ranged from 100 to 150 and extraction recoveries varied between 68 and 105%, both of which are relatively high over those of published methods. The linear ranges were wide (10–100 000 μg/L for GC‐FID and 0.01–1 μg/L for GC‐MS) and LODs were low (3–4 μg/L for GC‐FID and 0.003 μg/L for GC‐MS). The RSDs for 100.0 μg/L of each OPP in water were in the range of 5.3–7.8% (n = 5).  相似文献   

8.
Characterization of complex petrochemical samples has been a classical subject of comprehensive two-dimensional (2D) gas chromatography (GC x GC). Macroscopic properties of these samples can be described accurately by separation of compounds in classes of identical molecular functionality. Ring structures in the carbon backbone of these compounds, which can be divided in saturated and unsaturated, are amongst the foremost functionalities affecting samples properties. Unfortunately, GC x GC tuned for separation of both saturated and unsaturated ring structures is likely to result in convoluted chromatograms when a distribution of both molecular properties is present in the sample. An independent liquid chromatographic (LC) separation preceding GC x GC could be used to resolve the mixture based on unsaturated rings, allowing saturated rings to be resolved separately in the GC x GC separation. This three-dimensional separation (abbreviated LC-GC x GC) was performed after rigorous evaluation of LC as part of a multidimensional separation using LC x GC. Group-type separation was achieved using this separation for components with either saturated or unsaturated rings. Results of this separation were used to compare information obtained by GC x GC with LC-GC x GC.  相似文献   

9.
本文建立了气相色谱-微池电子捕获检测法(GC-μECD),同时测定生活饮用水中百菌清、七氯、滴滴涕、六六六、林丹、六氯丁二烯、溴氰菊酯、1,1-二-氯苯、1,2-二氯苯、三氯苯、六氯苯11种有机氯,马拉硫磷、对硫磷、甲基对硫磷、毒死蜱、乐果、敌敌畏6种有机磷,以及硝基苯、2,4,6-三硝基甲苯、1,3-二硝基苯、邻,间,对硝基氯苯、2,4-二硝基氯苯,2,4-二硝基甲苯6种硝基苯类有机物的分析方法.样品经萃取后,采用OV-1701色谱柱(30 m×0.25 mm×0.25μtm)程序升温进行分离,用微池电子捕获检测器(μECD)进行检测,通过保留时间定性,外标法定量.结果表明该方法分离效果好,灵敏度高,选择性强,简便、快速、准确,能够满足同时测定生活饮用水中上述23种有机化合物的需要.  相似文献   

10.
A comprehensive 2-D GC (GC x GC) dual detection system, coupled to nitrogen-phosphorus detection (NPD) and electron capture detection (ECD) has been developed for multiclass pesticide analysis in vegetable sample matrices. The second dimension column was connected to the parallel detectors via a microfluidic splitting device. The sample set comprised 17 organochlorine pesticides, 15 organophosphorus insecticides and 9 N-containing fungicides. Selective detection of vegetable sample extracts provides increased information content through simultaneous, correlated GC x GC plots for both ECD and NPD, which demonstrated improved separation of pesticide standards from each other, and from the sample matrix. The efficiency of NPD and ECD modes was investigated and compared; the ECD produced broader peaks, with the ECD generating greater response as measured by S/N ratio. Accuracy and precision of the approach were determined as repeatability and reproducibility for selected pesticides. The RSDs of the intraday (n = 5) and interday (3 days) analyses of the selected pesticides are less than 2.5 and 10%, respectively. The relative ratio of the ECD/NPD response is proposed to offer additional identification of individual pesticides, in addition to the (1)t(R) and (2)t(R) retention coordinates; ratios vary from 19 to over 1000 for selected pesticides that also exhibit ECD and NPD activities.  相似文献   

11.
The objective of the present work was to investigate the chromatographic behavior of natural phenolic compounds in micellar and aqueous‐organic LC using a short column packed with 1.8 μm particles. Firstly, the effect of ACN and SDS on elution strength and selectivity was examined by isocratic submicellar (0–30% ACN/5% 1‐butanol/1–6 mM SDS) and micellar (0–30% ACN/5% 1‐butanol/40–60 mM SDS) systems. The varied concentrations of two modifiers in the mobile phases revealed different eluting power. Then, the application of organic modifier gradient was discussed in both submicellar and micellar LC using mobile phases of 4 mM SDS/5% 1‐butanol or 50 mM SDS/5% 1‐butanol containing ACN gradient from 0 to 30%, respectively. For micellar system, the separation was found to be better in gradient than isocratic elution. Additionally, the sensitivity of aqueous‐organic LC was examined. The mobile phase was a mixture of ACN and water employing gradient elution at a flow rate of 0.5 mL/min, with analysis time below 9 min. It was found that separation efficiency was significantly better compared with micellar LC. Besides, the aqueous‐organic LC has been applied to separation of various phenolic compounds in Yangwei granule or Radix Astragali samples.  相似文献   

12.
This work reports the development of a simple and automated method for the quantitative determination of several contaminants (triazine, phenylurea, and phenoxyacid herbicides; carbamate insecticides and industrial chemicals) and their metabolites in human urine with a simplified sample treatment. The method is based on the online coupling of an extraction column with RP LC separation–UV detection; this coupling enabled fast online cleanup of the urine samples, efficiently eliminating matrix components and providing appropriate selectivity for the determination of such compounds. The variables affecting the automated method were optimized: sorbent type, washing solvent and time, and the sample volume injected. The optimized sample treatment reported here allowed the direct injection of large volumes of urine (1500 μL) into the online system as a way to improve the sensitivity of the method; limits of detection in the 1–10 ng/mL range were achieved for an injected volume of 1500 μL of urine, precision being 10% or better at a concentration level of 20 ng/mL. The online configuration proposed has advantages such as automation (all the steps involved in the analysis – injection of the urine, sample cleanup, analyte enrichment, separation and detection – are carried out automatically) with high precision and sensitivity, reducing manual sample manipulation to freezing and sample filtration.  相似文献   

13.
Liquid‐phase microextraction (LPME) is a sample preparation technique based on disposable polypropylene hollow fibres, which results in efficient sample clean‐up and high preconcentration. The present paper describes the combination of LPME with LC‐MS utilising electrospray ionisation for high sensitivity. Nine antidepressant drugs were extracted from 50 or 500 μL of plasma or whole blood samples, through a thin layer of dodecyl acetate immobilised in the pores of the hollow fibre, and into 15 μL of 200 mM formic acid as acceptor solution inside the hollow fibre. Analyte recoveries in the range 12–68% and 9–52% were obtained from 50 μL of plasma and whole blood respectively. The acceptor solution (15 μL) was diluted with 60 μL of 5 mM ammonium formate pH = 2.7 prior to injection into the LC‐MS system. The system was qualitatively investigated for matrix effects utilising a post‐column infusion system. Whole blood from 5 different persons was cleaned‐up by LPME and injected onto the analytical column while a solution of the 9 model compounds was continuously infused post‐column. No signs of ion suppression were seen for any of the model compounds. Limits of quantification (S/N = 10) were in the low ng/mL range for 6 of the 9 model compounds utilising a whole blood sample volume of only 50 μL. The repeatability of the extractions was investigated utilising paroxetine as internal standard. Acceptable RSDs (%) were obtained (< 20%) for 5 of the antidepressants. By increasing the sample volume from 50 to 500 μL of whole blood RSDs below 20% (3–16%) were observed for all 8 antidepressants.  相似文献   

14.
Two well known derivatization procedures, pentafluorobenzylation and BF(3)/methanol esterification, were compared for their applications to GC analysis of acidic water micropollutants (chloroacetic and phenoxyalkanoic acids). A two-level factorial design was used to determine the influence of different parameters and their interactions on each derivatization process. The studied parameters are the reaction time, the amount of reagent (PFBBr) or catalyst (BF(3)) and the temperature. Considering pentafluorobenzylation, the most influential factors are the concentration of PFBBr and the interaction ;temperature-time', which improve the derivatization efficiency. However, a PFBBr concentration of 250 mg l(-1) in the reaction medium cannot be exceeded because of the increase in interfering by-products in GC/ECD. Moreover, chloroacetic acid derivatives are co-eluted with these compounds. This disadvantage was not observed in the operating conditions of GC/MS. The improved pentafluorobenzylation procedure allows the direct determination of the derivatives in GC/ECD without any purification step. The average detection limits are 1.6 and 80 mug l(-1), respectively in GC/ECD and in GC/MS. The reproducibility is 13%. For the BF(3)/methanol esterification, the interactions ;BF(3) concentration-temperature' and ;BF(3) concentration-reaction time' are significant and have a negative effect on the derivatization yield. A linear model was therefore proposed and validated in the experimental area under study. All the compounds studied were detected in GC/MS, and the average detection limit is 2 mug l(-1). The reproducibility is around 7%. Therefore, after optimization, BF(3)/methanol esterification followed by GC/MS is as sensitive as pentafluorobenzylation used with GC/ECD, and more reproducible.  相似文献   

15.
After a successful off-line feasibility study, the automation of comprehensively coupled liquid chromatography and gas chromatography (LC x GC) has been studied. Important aspects to consider when developing automated LG x GC include the relative speeds of the two dimensions, the compatibility of the LC eluent (type and flow rate) with the GC dimension, and the column loadabilities. Because the GC separation is relatively slow, the LC instrument has to be operated in the stop-flow mode. Two interfaces for transferring large numbers of subsequent LC fractions to the GC were constructed: one based on a six-port switching valve, and one which uses a dual side-port syringe. Both interfaces were found to perform fully acceptably. The actual transfer of the LC fraction to the GC was realised using a standard split injector to vaporise the compounds and LC eluent. Gas phase splitting was applied to match LC mass load and GC column loadability. The standard deviations of the peak areas obtained in this way were better than 7% (n = 6). The reliability of the system was demonstrated by the problem-free analysis of large series of oil and fat samples, with the focus on both intact triglycerides and their fatty acid methyl esters (FAMEs). Finally, the hyphenation of the automated LC x GC system to a sensitive and rapid-scanning time-of-flight mass spectrometer was realised. By using LC x GC-ToF MS, the information density of the chromatograms could be improved even further, which allowed easy identification of individual compounds as well as compound groups.  相似文献   

16.
In this study, improved homogeneous liquid–liquid extraction (HLLE), equipped with GC–ECD has been developed for the extraction and determination of organochlorinated pesticides (OCPs) in water. The phase separation phenomenon occurred by temperature in a ternary solvent (water/methanol/chloroform) system. Several factors influencing the extraction efficiency were investigated and optimized with orthogonal array design. Furthermore, in this study, for the first time, before immiscible organic phase formation, different volumes of deionized water were subjected to homogeneous solution to investigate the effect of this factor on the extraction performance of HLLE. Optimal results were as follows: volume of the extracting solvent (chloroform), 50?μL; volume of the consolute solvent (methanol), 1.2?mL; volume of the sample, 2.5?mL; volume of the deionized water, 0.5?mL; time of centrifuge, 7?min. Under the optimum conditions, repeatability was obtained by spiking OCPs at concentration level of 20?μg?L?1, the RSDs varied between 4.8 and 10.7% (n?=?4). The limits of detection of 0.02–0.12?μg?L?1 were obtained for the OCPs. Enrichment factors and the extraction percent of the studied compounds were in the range of 240–300 and 69.2–84.0%, respectively. Finally, the results of the proposed HLLE method were compared with the same HLLE method without addition of deionized water. The results indicated that the proposed method has higher enrichment factors and lower detection limits.  相似文献   

17.
Short-chain chlorinated paraffins (SCCPs) are highly complex technical mixtures with thousands of isomers and numerous homologs. They are classified as priority candidate persistent organic pollutants under the Stockholm Convention for their persistence, bioaccumulation, and toxicity. Analyzing SCCPs is challenging because of the complexity of the mixtures. Chromatograms of SCCPs acquired using one-dimensional (1D) gas chromatography (GC) contain a large characteristic “peak” with a broad and unresolved profile. Comprehensive two-dimensional GC (GC×GC) shows excellent potential for separating complex mixtures. In this study, GC×GC coupled with micro electron capture detection (μECD) was used to separate and screen SCCPs. The chromatographic parameters, including the GC column types, oven temperature program, and modulation period, were systematically optimized. The SCCP congeners were separated into groups using a DM-1 column connected to a BPX-50 column. The SCCP congeners in technical mixtures were separated according to the number of chlorine substituents for a given carbon chain length and according to the number of carbon atoms plus chlorine atoms for different carbon chain lengths. A fish tissue sample was analyzed to illustrate the feasibility of the GC×GC–μECD method in analyzing biological samples. Over 1,500 compounds were identified in the fish extract, significantly more than were identified using 1D GC. The detection limits for five selected SCCP congeners were between 1 and 5 pg/L using the GC×GC method, and these were significantly lower than those achieved using 1D GC. This method is a good choice for analysis of SCCPs in environmental samples, exhibiting good separation and good sensitivity. Graphical Abstract
Chromatograms of a technical C10–C13 SCCP mixture with a 55 % (w/w) chlorine content obtained using a gas chromatography–electron capture detection (ECD) and b GC×GC–μECD  相似文献   

18.
The present research is focused on the offline combination of normal-phase LC to double-oven GC x GC-quadrupole MS. Initially, a diesel sample was subjected to automated LC x GC in order to define the elution windows of four fractions, viz., saturated hydrocarbons, monocyclic aromatics, dicyclic aromatics, tri- + tetracyclic aromatics; each fraction was collected exploiting the LC system in a further analysis and subjected to large-volume-injection-GC x GC analysis using an apolar-polar column combination. The GC x GC operational conditions were tuned in relation to the specific separation requirements of each heart-cut. The main benefits of what can be defined as offline LC-GC x GC were: (i) the high first-dimension LC selectivity; (ii) the injection of high sample amounts in the GC x GC system, enabling the detection and quantification of a series of low-amount diesel constituents; (iii) improved GC x GC operational conditions for each heart-cut with respect to direct GC x GC.  相似文献   

19.
A multidimensional, on-line coupled liquid chromatographic/gas chromatographic system was developed for the quantification of polycyclic aromatic hydrocarbons (PAHs). A two-dimensional liquid chromatographic system (2D-liquid chromatography (LC)), with three columns having different selectivities, was connected on-line to a two-dimensional gas chromatographic system (2D-gas chromatography (GC)). Samples were cleaned up by combining normal elution and column back-flush of the LC columns to selectively remove matrix constituents and isolate well-defined, PAH enriched fractions. Using this system, the sequential removal of polar, mono/diaromatic, olefinic and alkane compounds from crude extracts was achieved. The LC/GC coupling was performed using a fused silica transfer line into a programmable temperature vaporizer (PTV) GC injector. Using the PTV in the solvent vent mode, excess solvent was removed and the enriched PAH sample extract was injected into the GC. The 2D-GC setup consisted of two capillary columns with different stationary phase selectivities. Heart-cutting of selected PAH compounds in the first GC column (first dimension) and transfer of these to the second GC column (second dimension) increased the baseline resolutions of closely eluting PAHs. The on-line system was validated using the standard reference materials SRM 1649a (urban dust) and SRM 1975 (diesel particulate extract). The PAH concentrations measured were comparable to the certified values and the fully automated LC/GC system performed the clean-up, separation and detection of PAHs in 16 extracts in less than 24 h. The multidimensional, on-line 2D-LC/2D-GC system eliminated manual handling of the sample extracts and minimised the risk of sample loss and contamination, while increasing accuracy and precision.
Figure
Scheme of the 2D-LC/2D-GC system  相似文献   

20.
Multidimensional separation techniques play an increasingly important role in separation science, especially for the analysis of complex samples such as proteins. The combination of reversed‐phase liquid chromatography in the nanoscale and CZE is especially beneficial due to their nearly orthogonal separation mechanism and well‐suited geometries/dimensions. Here, a heart‐cut nano‐LC–CZE–MS setup was developed utilizing for the first time a mechanical 4‐port valve as LC–CE interface. A model protein mixture containing four different protein species was first separated by nano LC followed by a heart‐cut transfer of individual LC peaks and subsequent CZE–MS analysis. In the CZE dimension, various glycoforms of one protein species were separated. Improved separation capabilities were achieved compared to the 1D methods, which was exemplarily shown for ribonuclease B and its different glycosylated forms. LODs in the lower μg/mL range were determined, which are considerably lower compared to traditional CZE–MS. In addition, this study represents the first application of an LC–CE–MS system for intact protein analysis. The nano‐LC–CZE–MS system is expected to be applicable to various other analytical challenges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号