首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A systematic approach to the formation of endohedrally filled atom clusters by a high‐temperature route instead of the more frequent multistep syntheses in solution is presented. Zintl phases Na12Ni1?xSn17 and K13?xCo1?xSn17, containing endohedrally filled intermetalloid clusters [Ni@Sn9]4? or [Co@Sn9]5? beside [Sn4]4?, are obtained from high‐temperature reactions. The arrangement of [Ni@Sn9]4? or [Co@Sn9]5? and [Sn4]4? clusters, which are present in the ratio 1:2, can be regarded as a hierarchical replacement variant of the hexagonal Laves phase MgZn2 on the Mg and Zn positions, respectively. The alkali‐metal positions are considered for the first time in the hierarchical relationship, which leads to a comprehensive topological parallel and a better understanding of the composition of these compounds. The positions of the alkali‐metal atoms in the title compounds are related to the known inclusion of hydrogen atoms in the voids of Laves phases. The inclusion of Co atoms in the {Sn9} cages correlates strongly with the number of K vacancies in K13?xCo1?xSn17 and K5?xCo1?xSn9, and consequently, all compounds correspond to diamagnetic valence compounds. Owing to their diamagnetism, K13?xCo1?xSn17, and K5?xCo1?xSn9, as well as the d‐block metal free binary compounds K12Sn17 and K4Sn9, were characterized for the first time by 119Sn solid‐state NMR spectroscopy.  相似文献   

2.
Vibrational spectra of the compounds M4E4 (M = K, Rb, Cs; E = Ge, Sn) and of β‐Na4Sn4 with the cluster anions [E4]4? were analysed based on the point group of isolated tetrahedranide units. The lower individual symmetry of the anions in the real structure being more patterned and complex primarily affects the spectra of the tetrahedro‐tetragermanides. ν3(F2) clearly splits both in Raman and IR and in the case of K4Sn4 only in IR. Rb4Sn4 and Cs4Sn4 exhibit very simple spectra with three bands in Raman and one band in IR. The breathing mode ν1(A1) for the quasi isolated [E4]4? cluster appears only in the Raman spectrum and is hardly influenced by the structural environment and by the nature of the alkali metal cations: ν1(A1) = 274 cm?1 ([Ge4]4?) and 183‐187 cm?1 ([Sn4]4?), respectively. The calculated valence force constants fd(E–E) are: [Ge4]4? : fd = 0.89 Ncm?1 ( K ), 0.87 Ncm?1 ( Rb ), 0.86 Ncm?1 ( Cs ) and [Sn4]4? : 0.67 Ncm?1 ( Na ), 0.66 Ncm?1 ( K ), 0.67 Ncm?1 ( Rb ), 0.68 Ncm?1 ( Cs ). Both, the frequencies and the force constants fit well into the range previously reported.  相似文献   

3.
Na12Ge17 is prepared from the elements at 1025 K in sealed niobium ampoules. The crystal structure reinvestigation reveals a doubling of the unit cell (space group:P21/c; a = 22.117(3)Å, b = 12.803(3)Å, c = 41.557(6)Å, β = 91.31(2)°, Z = 16; Pearson code: mP464), furthermore, weak superstructure reflections indicate an even larger C‐centred monoclinic cell. The characteristic structural units are the isolated cluster anions [Ge9]4— and [Ge4]4— in ratio 1:2, respectively. The crystal structure represents a hierarchical cluster replacement structure of the hexagonal Laves phase MgZn2 in which the Mg and Zn atoms are replaced by the Ge9 and Ge4 units, respectively. The Raman spectrum of Na12Ge17 exhibits the characteristic breathing modes of the constituent cluster anions at ν = 274 cm—1 ([Ge9]4—) and ν = 222 cm—1 ([Ge4]4—) which may be used for identification of these clusters in solid phases and in solutions. Raman spectra further prove that Na12Ge17 is partial soluble both in ethylenediamine and liquid ammonia. The solution and the solid extract contain solely [Ge9]4—. The remaining insoluble residue is Na4Ge4. By heating the solvate Na4Ge9(NH3)n releases NH3 and decomposes irreversibly at 742 K, yielding Na12Ge17 and Ge.  相似文献   

4.
Endohedral clusters count as molecular models for intermetallic compounds—a class of compounds in which bonding principles are scarcely understood. Herein we report soluble cluster anions with the highest charges on a single cluster to date. The clusters reflect the close analogy between intermetalloid clusters and corresponding coordination polyhedra in intermetallic compounds. We now establish Raman spectroscopy as a reliable probe to assign for the first time the presence of discrete, endohedrally filled clusters in intermetallic phases. The ternary precursor alloys with nominal compositions “K5Co1.2Ge9” and “K4Ru3Sn7” exhibit characteristic bonding modes originating from metal atoms in the center of polyhedral clusters, thus revealing that filled clusters are present in these alloys. We report also on the structural characterization of [Co@Ge9]5? ( 1a ) and [Ru@Sn9]6? ( 2a ) obtained from solutions of the respective alloys.  相似文献   

5.
A new type of Zintl phase is presented that contains endohedrally filled clusters and that allows for the formation of intermetalloid clusters in solution by a one‐step synthesis. The intermetallic compound K5?xCo1?xSn9 was obtained by the reaction of a preformed Co? Sn alloy with potassium and tin at high temperatures. The diamagnetic saltlike ternary phase contains discrete [Co@Sn9]5? clusters that are separated by K+ ions. The intermetallic compound K5?xCo1?xSn9 readily and incongruently dissolves in ethylenediamine and in the presence of 4,7,13,16,21,24‐hexaoxa‐1,10‐diazabicyclo[8.8.8]hexacosane (2.2.2‐crypt), thereby leading to the formation of crystalline [K([2.2.2]crypt)]5[Co2Sn17]. The novel polyanion [Co2Sn17]5? contains two Co‐filled Sn9 clusters that share one vertex. Both compounds were characterized by single‐crystal X‐ray structure analysis. The diamagnetism of K5?xCo1?xSn9 and the paramagnetism of [K([2.2.2]crypt)]5[Co2Sn17] have been confirmed by superconducting quantum interference device (SQUID) and EPR measurements, respectively. Quantum chemical calculations reveal an endohedral Co1? atom in an [Sn9]4? nido cluster for [Co@Sn9]5? and confirm the stability of the paramagnetic [Co2Sn17]5? unit.  相似文献   

6.
In this work, the largest heterometallic supertetrahedral clusters, [Zn6Ge16]4? and [Cd6Ge16]4?, were directly self‐assembled through highly‐charged [Ge4]4? units and transition metal cations, in which 3‐center–2‐electron σ bonding in Ge2Zn or Ge2Cd triangles plays a vital role in the stabilization of the whole structure. The cluster structures have an open framework with a large central cavity of diameter 4.6 Å for Zn and 5.0 Å for Cd, respectively. Time‐dependent HRESI‐MS spectra show that the larger clusters grow from smaller components with a single [Ge4]4? and ZnMes2 units. Calculations performed at the DFT level indicate a very large HOMO–LUMO energy gap in [M6Ge16]4? (2.22 eV), suggesting high kinetic stability that may offer opportunities in materials science. These observations offer a new strategy for the assembly of heterometallic clusters with high symmetry.  相似文献   

7.
The endohedral stannaspherene cluster anion [Ir@Sn12]3? was synthesized in two steps. The reaction of K4Sn9 with [IrCl(cod)]2 (cod: 1,5‐cyclooctadienyl) in ethylenediamine (en) solution first yielded the [K(2,2,2‐crypt)]+ salt (2,2,2‐crypt: 4,7,13,16,21,24‐hexaoxa‐1,10‐diazabicyclo[8.8.8]hexacosane) of the capped cluster anion [Sn9Ir(cod)]3?. Subsequently, crystals of this compound were dissolved in en, followed by the addition of triphenylphosphine or 1,2‐bis(diphenylphosphino)ethane and treatment at elevated temperatures. [Ir@Sn12]3? was obtained and characterized as the [K(2,2,2‐crypt)]+ salt. The isolation of [Sn9Ir(cod)]3? as an intermediate product establishes that the formation of the stannaspherene [Ir@Sn12]3? occurs through the oxidation of [Sn9Ir(cod)]3?. Among the structurally characterized tetrel cluster anions, [Ir@Sn12]3? is a unique example of a stannaspherene, and one of the rare spherical clusters encapsulating a metal atom that is not a member of Group 10. Single‐crystal structure determination shows that the novel Zintl ion cluster has nearly perfect icosahedral Ih point symmetry.  相似文献   

8.
《中国化学快报》2023,34(1):107207
To investigate the reactivity of homoatomic clusters [E9]4? (E = Si-Pb) and intermetalloid clusters [M@E9]q?, the reactions of the Zintl anions [Sn9]4? and [Ni@Sn9]4? with the CdMes2 (Mes = Mesitylene) in the presence of 2.2.2-crypt were carried out. Two new compounds [K(2.2.2-crypt)]6[(Sn9)Cd(Sn9)]·en (1) and [K(2.2.2-crypt)]6[(Ni@Sn9)Cd(Ni@Sn9)]·en (2) were afforded. Both 1 and 2 were characterized by single-crystal X-ray diffraction, energy dispersive X-ray (EDX), and electrospray ionization mass spectrometry (ESI-MS), and can be viewed as two [Sn9]4? or [Ni@Sn9]4? subunits bridged by Cd ion in an η3:η3 coordination mode. Quantum chemical calculations reveal the relationships between the geometries and electronic structures of clusters 2a, [Ni3Ge18]4? and [Cu4@Sn18]4?. Further electron localization technique (AdNDP method) was performed to explain chemical bonding patterns of 1a.  相似文献   

9.
The compound [K([2.2.2]crypt)]Cs7[Sn9]2(en)3 ( 1 ) was synthesized from an alloy of formal composition KCs2Sn9 by dissolving in ethylenediamine (en) followed by the addition of [2.2.2]crypt and toluene. 1 crystallizes in the orthorhombic space group Pcca with a = 45.38(2), b = 9.092(4), c = 18.459(8) Å, and Z = 4. The structure consists of Cs7[Sn9]2 layers which contain [Sn9]4– anions and Cs+ cations. The layers are separated by [K([2.2.2]crypt)]+ units. In the intermetallic slab (Cs7[Sn9]2) compares the arrangement of pairs of symmetry‐related [Sn9]4– anions with the dimer ([Ge9]–[Ge9])6– in [K([2.2.2]crypt)]2Cs4([Ge9]–[Ge9]), in which the clusters are linked by a cluster‐exo bond. The shortest distance between atoms of such two clusters in 1 is 4.762 Å, e. g. there are no exo Sn‐Sn bonds. The [Sn9]4– anion has almost perfect C4v‐symmetry.  相似文献   

10.
The addition of Sn and Zn ions to [Ge9] clusters by reaction of [Ge9]4? with SnPh2Cl2, ZnCp*2 (Cp*=pentamethylcyclopentadienyl), or Zn2[HC(Ph2P=NPh)2]2 is reported. The resulting Sn‐ and Zn‐bridged clusters [(Ge9)M(Ge9)]q? (M=Sn, q=4; M=Zn, q=6) display various coordination modes. The M atoms that coordinate to the open square of a C4v‐symmetric [Ge9] cluster form strong covalent multicenter M?Ge bonds, in contrast to the M atoms coordinating to triangular cluster faces. Molecular orbital analyses show that the M atoms of the Ge9M fragments coordinate to a second [Ge9] cluster with similar orbitals but in different ways. The [Ge9Sn]2?unit donates two electrons to the triangular face of a second [Ge9]2? cluster with D3h symmetry, whereas [Ge9Zn]2?acts as an electron acceptor when interacting with the triangular face of a D3h‐symmetric [Ge9]4? unit.  相似文献   

11.
Preparation and Crystal Structure of K4[SnO3] K4[SnO3] crystallizes with the K4[PbO3] structure in the orthorhombic spacegroup Pbca (No. 61) with the lattice constants a = 652.2(3) pm, b = 1 112.1(5) pm and c = 1 893.7(7) pm. In the structure isolated ψ-tetrahedral anions [SnIIO3]4? are arranged in layers perpendicular [001]. The structure of K4[SnO3] will be compared with those of stannates and plumbates of composition A4[MIIO3] (A = Na, K, Rb, Cs) and with the known potassium stannates(II).  相似文献   

12.
The compound [Rb(18‐crown‐6)]2Rb2[Sn9](en)1.5 ( 1 ) was synthesized from an alloy of formal composition K2Rb2Sn9 by dissolving in ethylenediamine (en) followed by the addition of 18‐crown‐6 and toluene. 1 crystallizes in the monoclinic space group P21/n with a = 10.557(2), b = 25.837(5), c = 20.855(4)Å, β = 102.39°, and Z = 4. The structure consists of [Sn9]4— cluster anions, which are connected via Rb atoms to infinite [Rb4Sn9] layers. The layers of binary composition are separated by the crown ether molecules. The crown ether molecules are bound by one side via the Rb atoms to the [Sn9]4— anions. The other side, which is turned away from the Rb atoms, shows only weak van der Waals interactions to the crown ether molecules of the next layer. Comparison with other compounds of similar composition shows, that the variation of the alkali metals and the complexing organic molecules leads to the low dimensional arrangement of the clusters.  相似文献   

13.
Alkaline Metal Stannide‐Silicates and ‐Germanates: ‘Double Salts’ with the Zintl Anion [Sn4]4— The crystal structures of the tetrelid tetrelates A12[Sn4]2[GeO4] (A = Rb/Cs: monoclinic, P21/c, a = 1289.1(2) / 1331.72(7), b = 2310.1(4)/ 2393.6(1), c = 1312.6(2)/ 1349.21(7) pm, β = 119.007(3)/ 118.681(1)°, Z = 4, R1 = 0.1049/0.0803) and Cs20[Sn4]2[SiO4]3 (monoclinic, Cc, a = 2331.9(1), b = 1340.1(2), c = 1838.9(2) pm, β= 102.61(3)°, R1 = 0.0763) contain the Zintl anions [Sn4]4— and isolated oxotetrelate ions [MO4]4— (M = Si, Ge). The high temperature form of CsSn crystallizes with the KGe type (cubic, P4¯3n, a = 1444.7(1) pm, R1 = 0.0395).  相似文献   

14.
Reactions of ZnI2L2 (where L=[HC(PPh2NPh)]) with solutions of the Zintl phase K4Ge9 in liquid ammonia lead to retention of the Zn−Zn bond and formation of the anion [(η4‐Ge9)Zn−Zn(η4‐Ge9)]6−, representing the first complex with a Zn−Zn unit carrying two cluster entities. The trimeric anion [(η4‐Ge9)Zn{μ211Ge9)}Zn(η4‐Ge9)]8− forms as a side product, indicating that oxidation reactions also take place. The reaction of Zn2Cp*2 (Cp*=1,2,3,4,5‐pentamethylcyclopentadienyl) with K4Ge9 in ethylenediamine yielded the linear polymeric unit {[Zn[μ241Ge9)]}2− with the first head‐to‐tail arrangement of ten‐atom closo ‐clusters. All anions were obtained and structurally characterized as [A (2.2.2‐crypt)]+ salts (A =K, Rb). Copious computational analyses at a DFT‐PBE0/def2‐TZVPP/PCM level of theory confirm the experimental structures and support the stability of the two hypothetical ten vertex cluster fragments closo ‐[Ge9Zn]2− and (paramagnetic) [Ge9Zn]3−.  相似文献   

15.
The compound [K(18‐crown‐6)]8[Ge9=Ge9=Ge9=Ge9] ˙ 8en ( 1 ) featuring a [Ge9=Ge9=Ge9=Ge9]8‐cluster anion was synthesized from K4Ge9 for the first time. The X‐ray single crystal analysis shows that, in many respects such as bond connection and packing style, compound 1 is quite different from the previously reported compounds [Rb(18‐crown‐6)]8[Ge9=Ge9=Ge9=Ge9] ˙ 2en ( 2 ) and [Rb(18‐crown‐6)]8[Ge9=Ge9=Ge9=Ge9] ˙ 6en ( 3 ). Crystal packing of 1 gives strong indications that the highly charged nano‐rods self assembly in a hexagonal rod packing.  相似文献   

16.
Two types of 4f–3d thiostannates with general formula [Hen]2[Ln(en)4(CuSn3S9)] ? 0.5 en ( Ln1 ; Ln=La, 1 ; Ce, 2 ) and [Hen]4[Ln(en)4]2[Cu6Sn6S20] ? 3 en ( Ln2 ; Ln=Nd, 3 ; Gd, 4 ; Er, 5 ) were prepared by reactions of Ln2O3, Cu, Sn, and S in ethylenediamine (en) under solvothermal conditions between 160 and 190 °C. However, reactions performed in the range from 120 to 140 °C resulted in crystallization of [Sn2S6]4? compounds and CuS powder. In 1 and 2 , three SnS4 tetrahedra and one CuS3 triangle are joined by sharing sulfur atoms to form a novel [CuSn3S9]5? cluster that coordinates to the Ln3+ ion of [Ln(en)4]3+ (Ln=La, Ce) as a monodentate ligand. The [CuSn3S9]5? unit is the first thio‐based heterometallic adamantane‐like cluster coordinating to a lanthanide center. In 3 – 5 , six SnS4 tetrahedra and six CuS3 triangles are connected by sharing common sulfur atoms to form the ternary [Cu6Sn6S20]10? cluster, in which a Cu6 core is enclosed by two Sn3S10 fragments. The topological structure of the novel Cu6 core can be regarded as two Cu4 tetrahedra joined by a common edge. The Ln3+ ions in Ln1 and Ln2 are in nine‐ and eightfold coordination, respectively, which leads to the formation of the [CuSn3S9]5? and [Cu6Sn6S20]10? clusters under identical synthetic conditions. The syntheses of Ln1 and Ln2 show the influence of the lanthanide contraction on the quaternary Ln/Cu/Sn/S system in ethylenediamine. Compounds 1 – 5 exhibit bandgaps in the range of 2.09–2.48 eV depending on the two different types of clusters in the compounds. Compounds 1 , 3 , and 4 lost their organic components in the temperature range of 110–350 °C by multistep processes.  相似文献   

17.
K4[Ag404] Structure Type M4[Ag4O4] (M ? Li? Cs) and M4[Cu4O4] (M ? Li? Rb) have been prepared anew; as an example the crystal structure of K4[Ag4O4] has been revised. Contrary to our first report [2, 3] it crystallizes in the space-group I4 m2 with the “ring” [Ag4O4]4? which is not plane, however. Each two O2? (trans-arrangement) are rather (0.02 Å) above and below the plane of the “ring”, respectively. The new parameters are given in the text. The distances, for example d(Ag+·O2?) = 2.058 Å and the Madelung Part of Lattice Energy, MAPLE, are both in a very good agreement with the measurements and calculations, respectively, which have been done on other ternary oxides with silver.  相似文献   

18.
Tetrarubidiumnonagermanid(4–)-ethylendiamin, Rb4[Ge9][en] Orange-farbene Kristalle von Rb4[Ge9][en] erhält man nach der Austauschreaktion einer Lösung von ,NaGe2.25‘ (precursor) in Ethylendiamin (en) mit festem RbI bei 360 K und nachfolgender langsamer Abkühlung. Die Verbindung ist äußerst empfindlich gegen Oxidation und Hydrolyse. Der thermische Abbau im dynamischen Vakuum beginnt mit der vollständigen Abgabe von en bei 350 K. Es folgt die Sublimation von Rubidium in vier weiteren Stufen (Rb8Ge25, Rb8Ge44, RbxGe136 mit x È 16, Ge). Das Ramanspektrum zeigt die charakteristischen Banden des Anions [Ge9]4– bei 151, 163, 185 und 222 cm–1. Rb4[Ge9][en] kristallisiert in einem neuen Strukturtyp (Raumgruppe P21/m; a = 15.353 Å, b = 16.434 Å, c = 15.539 Å, β = 113.75°; Z = 6; Pearsonsymbol mP198-40), der als hierarchische Variante der Strukturen von Al4YbMo2 und CrB4 (hierarchische Basistypen, „initiators”︁) beschrieben werden kann, indem Atome partiell durch Aggregate ersetzt werden: B4[□][Cr] ≙ Al4[Yb][Mo]2 ≙ Rb4[Ge9][en]1–2. Drei kristallographisch unabhängige [Ge9]4–-Cluster sind in ein vierbindiges 465-Netz aus Rb-Atomen eingebettet, ein Netzwerk kondensierter Tetraasterane. Die Cluster sind verzerrte überkappte tetragonale Antiprismen mit D1(Ge–Ge) = 2.57 Å (16 Ç ) und D2(Ge–Ge) = 2.84 Å (4 Ç ). Die Atome der Cluster mit D1 und D2 liegen auf der Oberfläche eines Rotationsellipsoids (a = b = 2.136 Å, c = 2.431 Å). Die en-Moleküle befinden sich in offenen Kanälen entlang [1¯ 0 1]. Die Koordinationen [Ge9]Rb12/4 und Rb [Ge9]4/12 en2/8 zeigen, daß beim ersten Schritt der Solvatisierung Kationen und Clusteranionen nicht voneinander getrennt werden.  相似文献   

19.
Reaction of cyclooctatetraene (COT) iron(II) tricarbonyl, [Fe(cot)(CO)3], with one equivalent of K4Ge9 in ethylenediamine (en) yielded the cluster anion [Ge8Fe(CO)3]3? which was crystallographically‐characterized as a [K(2,2,2‐crypt)]+ salt in [K(2,2,2‐crypt)]3[Ge8Fe(CO)3]. The chemically‐reduced organometallic species [Fe(η3‐C8H8)(CO)3]? was also isolated as a side‐product from this reaction as [K(2,2,2‐crypt)][Fe(η3‐C8H8)(CO)3]. Both species were further characterized by EPR and IR spectroscopy and electrospray mass spectrometry. The [Ge8Fe(CO)3]3? cluster anion represents an unprecedented functionalized germanium Zintl anion in which the nine‐atom precursor cluster has lost a vertex, which has been replaced by a transition‐metal moiety.  相似文献   

20.
For decades the chemistry of polyhalides was dominated by polyiodides and more recently also by an increasing number of polybromides. However, apart from a few structures containing trichloride anions and a single report on an octachloride dianion, [Cl8]2?, polychlorine compounds such as polychloride anions are unknown. Herein, we report on the synthesis and investigation of large polychloride monoanions such as [Cl11]? found in [AsPh4][Cl11], [PPh4][Cl11], and [PNP][Cl11]?Cl2, and [Cl13]? obtained in [PNP][Cl13]. The polychloride dianion [Cl12]2? has been obtained in [NMe3Ph]2[Cl12]. The novel compounds have been thoroughly characterized by NMR spectroscopy, single‐crystal Raman spectroscopy, and single‐crystal X‐ray diffraction. The assignment of their spectra is supported by molecular and periodic solid‐state quantum‐chemical calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号