首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Summary In §1 we study a class of pseudo-differential operators inR n. In §3 the results obtained in §§1, 2 are applied to study of an elliptic boundary value problem in the exterior of a bounded domain ofR n for differential operators whose coefficients have a polynomial growth to infinity. Entrata in Redazione il 23 marzo 1972.  相似文献   

2.
In this paper the results from [7, 8], concerning the asymptotic behaviour of the spectral function on the diagonal for Schrodinger operators h →0, are extended to the case of some h-admissible operators, acting in Rn, no 2.  相似文献   

3.
Let X0,X1,... be a geometrically ergodic Markov chain with state space and stationary distribution . It is known that if h: R satisfies (|h|2+)< for some >0, then the normalized sums of the Xis obey a central limit theorem. Here we show, by means of a counterexample, that the condition (|h|2+)< cannot be weakened to only assuming a finite second moment, i.e., (h2)<.Reasearch supported by the Swedish Research Council.  相似文献   

4.
In this paper, the unboundedness of solutions for the following planar Hamilton system Ju ′ = ?H (u) + h (t) is discussed, where the function H (u) ∈ C2(R2, R) is positive for u ≠ 0 and is positively (q, p)‐quasihomogeneous of quasi‐degree pq, where p > 1 and + = 1, h: S1R2 with hL(0, 2π) is 2π ‐periodic and J is the standard symplectic matrix. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Sommario Introduzione — Parte I.Forme definite ed indefinite di Hermite - § 1. Equivalenza delle sostituzioni aritmetiche a modulo indecomponibile - § 2. Il sistema completo normale di sostituzioni applicato alle forme di Hermite - § 3. Continuazione - § 4. Osservazione fondamentale — Parte II.Forme definite di Hermite - § 5. Le forme definite di Hermite nello spazio non euclideo - § 6. I gruppi automorfi aritmetici delle forme definite di Hermite — Parte III.Relazioni sopra il numero delle classi di forme definite di Hermite - § 7. I valori del numeron per le forme definite di Hermite - § 8. Forme definite di Hermite primitive di prima specie - § 9. Forme definite di Hermite primitive di seconda specie.  相似文献   

6.
In this article we characterize the quasi‐barrelledness of the projective tensor product of a coechelon space of type one k 1(A) with a Fréchet space, including homological conditions as exactness properties of the corresponding tensor product functor k 1(A) ·: ? → ??, acting from the category of Fréchet spaces to the category of linear spaces, resp. the vanishing of its first right derivative Tor1π (k 1(A),.). This generalizes and extends a classical theorem of A. Grothendieck ([13, Chap. II, §4, No. 3, Theorem 15]). Further we present an analogous theorem for complete coechelon spaces of type zero and the injective tensor product and results concerning the stronger property of barrelledness. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
In the present paper, we study the problem of multiple non semi‐trivial solutions for the following systems of Kirchhoff‐type equations with discontinuous nonlinearities (1.1) where FC1(RN×R+×R+,R),VC(RN,R), and By establishing a new index theory, we obtain some multiple critical point theorems on product spaces, and as applications, three multiplicity results of non semi‐trivial solutions for (1.1) are obtained. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
An h‐set is a nonempty compact subset of the Euclidean n‐space which supports a finite Radon measure for which the measure of balls centered on the subset is essentially given by the image of their radius by a suitable function h. In most cases of interest such a subset has Lebesgue measure zero and has a fractal structure. Let Ω be a bounded C domain in with Γ ? Ω. Let where (?Δ)?1 is the inverse of the Dirichlet Laplacian in Ω and trΓ is, say, trace type operator. The operator B, acting in convenient function spaces in Ω, is studied. Estimations for the eigenvalues of B are presented, and generally shown to be dependent on h, and the smoothness of the associated eigenfunctions is discussed. Some results on Besov spaces of generalised smoothness on and on domains which were obtained in the course of this work are also presented, namely pointwise multipliers, the existence of a universal extension operator, interpolation with function parameter and mapping properties of the Dirichlet Laplacian. © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim  相似文献   

9.
Riassunto Recentemente diversi autori (v. [15], [16], [17], [18], [19], [20]) si sono interessati di problemi di esistenza e di regolarità di soluzioni di problemi variazionali verificanti diseguaglianze. In questo articolo considereremo il caso delle ipersuperfici minimali (di area minima), più precisamente delle frontiere minimali nel senso diDe Giorgi (v. [2] o [3]). Il risultato di regolarità, che è quello che ci pare più interessante, è grosso modo il seguente:frontiere minimali rispetto ad un ostacolo di classe C 1 sono di classe C1 in un intorno dell'ostacolo stesso. Il Teorema 2 del § 3 contiene l'enunciato preciso di tale risultato. Nel § 2 si fanno alcune considerazioni sulla validità del teorema di Bernstein per le frontiere minimali, in esso si prova (v. il Teorema 1) che un insieme avente frontiera non vuota minimale inR n e contenente un semispazio è esso stesso un semispazio. Tale risultato serve per la dimostrazione del teorema 2. Nel § 1 sono contenuti alcuni complementi alla teoria delle frontiere minimali.
Résumé On considère le problème des hypersurfaces minimales en présence d'obstacles. On prouve le résultat de regularité suivant: ?les hypersurfaces minimales en présence d'obstacles de classeC 1 sont de classeC 1 dans un environ de l'obstacle?.


Lavoro eseguito nell'ambito dell'attività dei gruppi di ricerca del C.N.R. nell'anno 1970.  相似文献   

10.
We consider the estimation problem of a location parameter on a sample of size n from a two-sided Weibull type density % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% GaamOzaiaacIcacaWG4bGaeyOeI0IaeqiUdeNaaiykaiabg2da9iaa% doeacaGGOaGaeqySdeMaaiykaiGacwgacaGG4bGaaiiCaiaacIcacq% GHsislcaGG8bGaamiEaiabgkHiTiabeI7aXjaacYhadaahaaWcbeqa% aiabeg7aHbaakiaacMcaaaa!52AD!\[f(x - \theta ) = C(\alpha )\exp ( - |x - \theta |^\alpha )\] for –<x<, –<< and 1<a<3/2, where % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Gaam4qaiaacIcacqaHXoqycaGGPaGaeyypa0JaeqySdeMaai4laiaa% cUhacaaIYaGaeu4KdCKaaiikaiaaigdacaGGVaGaeqySdeMaaiykai% aac2haaaa!4B0E!\[C(\alpha ) = \alpha /\{ 2\Gamma (1/\alpha )\} \]. Then the bound for the distribution of asymptotically median unbiased estimators is obtained up to the 2a-th order, i.e., the order % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% GaamOBamaaCaaaleqabaGaeyOeI0IaaiikaiaaikdacqaHXoqycqGH% sislcaaIXaGaaiykaiaac+cacaaIYaaaaaaa!4444!\[n^{ - (2\alpha - 1)/2} \]. The asymptotic distribution of a maximum likelihood estimator (MLE) is also calculated up to the 2a-th order. It is shown that the MLE is not 2a-th order asymptotically efficient. The amount of the loss of asymptotic information of the MLE is given.  相似文献   

11.
We study two rings of quotients of C(X), the ring of continuous functions on the Tychonoff space X. The first, F(X), is the ring of quotients induced by the filter of ideals consisting of dense finite intersections of fixed maximal ideals. The second, C[F], is the ring of quotients induced by the filter of dense cofinite subspaces of X. After some preliminary information we explicitly describe in §2 and §3 the constructions of these rings of quotients. In the third section, we use F(X)and C[F] to define and study the class of h-points and h-spaces. In particular, we show that C-spaces and P-spaces are h-spaces. In the last section we construct an ideal of C(X)which will be used to give an ideal theoretic characterization of h-points. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
A generalized version of the regular interval theorem of Morse theory is proven using techniques from the theory of Riemannian submersions and conformal deformations. This approach provides an interesting link between Riemannian submersions (for real valued functions) and Morse theory.Let % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\]: (M,) R be a smooth real valued function on a non-compact complete connected Riemannian manifold (M,g) such that df is bounded in norm away from zero. By pointwise conformally deforming g to pg, p = d% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\]2, we show that (M,pg) is a complete Riemannian manifold, and that % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\]: (M,pg) R is a surjective Riemannian submersion and a globally trivial fiber bundle over R. In particular, all of the level hypersurfaces of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\] are diffeomorphic, and M is globally diffeomorphic to the product bundle R × % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\] –1(0) by a diffeomorphism F 0: R × % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\]–1(0) M that straightens out the level hypersurfaces of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\].Moreover, we show that (F 0)*(pg) is a parameterized Riemannian product manifold on R×% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\]–1(0), i.e., a product manifold with a metric that varies on the fibers {t} × % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\]–1(0). Also, F 0: (R × % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\]–1(0),(F 0)*(pg)) (M,g) is a conformal diffeomorphism between the Reimannian manifolds (R × % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\]–1(0), (F 0)*(pg)) and (M,g),so that (M,g) is conformally equivalent to a parameterized Riemannian product manifold. The conformal diffeomorphism F 0 is an isometry between the Riemannian product manifold (R × % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\]–1(0), 1 + g 0) (where g 0) is the metric induced by g on % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\]–1(0) and (M,g) if and only if d% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\] = 1 and Hess % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qegi0BVTgib5gDPfxDHbacfaGae8NKbmiaaa!3E95!\[f\] = 0.  相似文献   

13.
In this paper, we investigate the existence of incomplete group divisible designs (IGDDs) with block size four, group-type (g, h) u and general index λ. The necessary conditions for the existence of such a design are that u ≥ 4, g ≥ 3h, λg(u 1) ≡ 0 (mod 3), λ(g h)(u 1) ≡ 0 (mod 3), and λu(u 1)(g 2 h 2 ) ≡ 0 (mod 12). These necessary conditions are shown to be sufficient for all λ≥ 2. The known existence result for λ = 1 is also improved.  相似文献   

14.
In this article, it is shown that the necessary conditions for the existence of a holey Steiner pentagon system (HSPS) of type hn are also sufficient, except possibly for the following cases: (1) when n = 15, and h ≡ 1 or 5 (mod 6) where h ≢ 0 (mod 5), or h = 9; and (2) (h, n) ∈ {(6, 6), (6, 36), (15, 19), (15, 23), (15, 27), (30, 18), (30, 22), (30, 24)}. Moreover, the results of this article guarantee the analogous existence results for group divisible designs (GDDs) of type hn with block-size k = 5 and index λ = 2. © 1999 John Wiley & Sons, Inc. J Combin Designs 7: 41–56, 1999  相似文献   

15.
Two resolutions R and R of a combinatorial design are called orthogonal if |RiR|≤1 for all RiR and RR. A set Q={R1, R2, …, Rd} of d resolutions of a combinatorial design is called a set of mutually orthogonal resolutions (MORs) if the resolutions of Q are pairwise orthogonal. In this paper, we establish necessary and sufficient conditions for the asymptotic existence of a (v, k, 1)‐BIBD with d mutually orthogonal resolutions for d≥2 and k≥3 and necessary and sufficient conditions for the asymptotic existence of a (v, k, k?1)‐BIBD with d mutually orthogonal near resolutions for d≥2 and k≥3. We use complementary designs and the most general form of an asymptotic existence theorem for decompositions of edge‐colored complete digraphs into prespecified edge‐colored subgraphs. © 2009 Wiley Periodicals, Inc. J Combin Designs 17: 425–447, 2009  相似文献   

16.
V. B. Mnukhin 《Acta Appl Math》1992,29(1-2):83-117
Let (G, W) be a permutation group on a finite set W = {w 1,..., w n}. We consider the natural action of G on the set of all subsets of W. Let h 0, h 1,..., h N be the orbits of this action. For each i, 1 i N, there exists k, 1 k n, such that h i is a set of k-element subsets of W. In this case h i is called a symmetrized k-orbit of the group (G, W) or simply a k-orbit. With a k-orbit h i we associate a multiset H(h i ) = % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyykJeoaaa!3690!\[\langle \]h i (1), h i (2),..., h i (k)% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOkJepaaa!36A1!\[\rangle \] of its (k – 1)-suborbits. Orbits h i and h j are called equivalent if H(h i ) = H(h j ). An orbit is reconstructible if it is equivalent to itself only. The paper concerns the k-orbit reconstruction problem and its connections with different problems in combinatorics. The technique developed is based on the notion of orbit and co-orbit algebras associated with a given permutation group (G, W).  相似文献   

17.
We consider the following mean field equations: (0.1) where M is a compact Riemann surface with volume 1, h is a positive continuous function on M, ρ is a real number, (0.2) and where Ω is a bounded smooth domain, h is a C1 positive function on Ω, and ρ ∈ ?. Based on our previous analytic work [14], we prove, among other things, that the degree‐counting formula for ( 0.1 ) is given by () for ρ ∈ (8mπ, 8(m + 1)π). © 2003 Wiley Periodicals, Inc.  相似文献   

18.
Le nombre maximal de lignes de matrices seront désignées par:
1. (a) R(k, λ) si chaque ligne est une permutation de nombres 1, 2,…, k et si chaque deux lignes différentes coïncide selon λ positions;
2. (b) S0(k, λ) si le nombre de colonnes est k et si chaque deux lignes différentes coïncide selon λ positions et si, en plus, il existe une colonne avec les éléments y1, y2, y3, ou y1 = y2y3;
3. (c) T0(k, λ) si c'est une (0, 1)-matrice et si chaque ligne contient k unités et si chaque deux lignes différentes contient les unités selon λ positions et si, en plus, il existe une colonne avec les éléments 1, 1, 0.
La fonction T0(k, λ) était introduite par Chvátal et dans les articles de Deza, Mullin, van Lint, Vanstone, on montrait que T0(k, λ) max(λ + 2, (k − λ)2 + k − λ + 1). La fonction S0(k, λ) est introduite ici et dans le Théorème 1 elle est étudiée analogiquement; dans les remarques 4, 5, 6, 7 on donne les généralisations de problèmes concernant T0(k, λ), S0(k, λ), dans la remarque 9 on généralise le problème concernant R(k, λ). La fonction R(k, λ) était introduite et étudiée par Bolton. Ci-après, on montre que R(k, λ) S0(k, λ) T0(k, λ) d'où découle en particulier: R(k, λ) λ + 2 pour λ k + 1 − (k + 2)1/2; R(k, λ) = 0(k2) pour k − λ = 0(k); R(k, λ) (k − 1)2 − (k + 2) pour k 1191.  相似文献   

19.
We study the maximal function Mf(x) = sup |f(x + y, t)| when Ω is a region in the (y,t) Ω upper half space R and f(x, t) is the harmonic extension to R+N+1 of a distribution in the Besov space Bαp,q(RN) or in the Triebel-Lizorkin space Fαp,q(RN). In particular, we prove that when Ω= {|y|N/ (N-αp) < t < 1} the operator M is bounded from F (RN) into Lp (RN). The admissible regions for the spaces B (RN) with p < q are more complicated.  相似文献   

20.
It is well known that every tournament contains a Hamiltonian path, which can be restated as that every tournament contains a unary spanning tree. The purpose of this article is to study the general problem of whether a tournament contains a k‐ary spanning tree. In particular, we prove that, for any fixed positive integer k, there exists a minimum number h(k) such that every tournament of order at least h(k) contains a k‐ary spanning tree. The existence of a Hamiltonian path for any tournament is the same as h(1) = 1. We then show that h(2) = 4 and h(3) = 8. The values of h(k) remain unknown for k ≥ 4. © 1999 John & Sons, Inc. J Graph Theory 30: 167–176, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号