首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Representatives of two classes of hexakis‐adducts of C60 were prepared by templated synthesis strategies. Compound 8 with a dipyridylmethano addend in a pseudo‐octahedral addition pattern was obtained by DMA‐templated addition (DMA=9,10‐dimethylanthracene; Scheme 1) and served as the starting material for the first supramolecular fullerene dimer 2 . Hexakis‐adduct 12 also possesses a pseudo‐octahedral addition pattern and was obtained by a sequence of tether‐directed remote functionalization, tether removal, and regioselective bis‐functionalization (Scheme 2). With its two diethynylmethano addends in trans‐1 position, it is a precursor for fascinating new oligomers and polymers that feature C60 moieties as part of the polymeric backbone (Fig. 1). With the residual fullerene π‐electron chromophore reduced to a `cubic cyclophane'‐type sub‐structure (Fig. 4), and for steric reasons, 8 and 12 no longer display electrophilic reactivity. As a representative of the second class of hexakis‐adducts, (±)‐ 1 , which features six addends in a distinct helical array along an equatorial belt, was prepared by a route that involved two sequential tether‐directed remote functionalization steps (Schemes 3 and 5). In compound (±)‐ 1 , π‐electron conjugation between the two unsubstituted poles of the carbon sphere is maintained via two (E)‐stilbene‐like bridges (Fig. 4). As a result, (±)‐ 1 features very different chemical reactivity and physical properties when compared to hexakis‐adducts with a pseudo‐octahedral addition pattern. Its reduction under cyclic voltammetric conditions is greatly facilitated (by 570 mV), and it readily undergoes additional, electronically favored Bingel additions at the two sterically well‐accessible central polar 6‐6 bonds under formation of heptakis‐ and octakis‐adducts, (±)‐ 30 and (±)‐ 31 , respectively (Scheme 6). The different extent of the residual π‐electron delocalization in the fullerene sphere is also reflected in the optical properties of the two types of hexakis‐adducts. Whereas 8 and 12 are bright‐yellow (end‐absorption around 450 nm), compound (±)‐ 1 is shiny‐red, with an end‐absorption around 600 nm. This study once more demonstrates the power of templated functionalization strategies in fullerene chemistry, providing addition patterns that are not accessible by stepwise synthetic approaches.  相似文献   

2.
The synthesis of (E)-hex-3-ene-l, 5-diynes and 3-methylidenepenta-1, 4-diynes with pendant methano[60]-fullerene moieties as precursors to C60-substituted poly(triacetylenes) (PTAs, Fig. 1) and expanded radialenes (Fig. 2) is described. The Bingel reaction of diethyl (E)-2, 3-dialkynylbut-2-ene-1, 4-diyl bis(2-bromopropane-dioates) 5 and 6 with two C60 molecules (Scheme 2) afforded the monomeric, silyl-protected PTA precursors 9 and 10 which, however, could not be effectively desilylated (Scheme 4). Also formed during the synthesis of 9 and 10 , as well as during the reaction of C60 with thedesilylated analogue 16 (Scheme 5 ), were the macrocyclic products 11, 12 , and 17 , respectively, resulting from double Bingel addition to one C-sphere. Rigorous analysis revealed that this novel macrocyclization reaction proceeds with complete regio- and diastereoselectivity. The second approach to a suitable PTA monomer attempted N, N′-dicyclohexylcarbodiimide(DCC)-mediated esterification of (E)-2, 3-diethynylbut-2-ene-l, 4-diol ( 18 , Scheme 6) with mono-esterified methanofullerene-dicarboxylic acid 23 ; however, this synthesis yielded only the corresponding decarboxylated methanofullerene-carboxylic ester 27 (Scheme 7). To prevent decarboxylation, a spacer was inserted between the reacting carboxylic-acid moiety and the methane C-atom in carboxymethyl ethyl 1, 2-methano[60]fullerene-61, 61-dicarboxylate ( 28 , Scheme 8), and DCC-mediated esterification with diol 18 afforded PTA monomer 32 in good yield. The formation of a suitable monomeric precursor 38 to C60-substituted expanded radialenes was achieved in 5 steps starting from dihydroxyacetone (Schemes 9 and 10), with the final step consisting of the DCC-mediated esterification of 28 with 2-[1-ethynyl(prop-2-ynylidene)]propane-1, 3-diol ( 33 ). The first mixed C60-C70 fullerene derivative 49 , consisting of two methano[60]fullerenes attached to a methano[70]fullerene, was also prepared and fully characterized (Scheme 13). The Cs-symmetrical hybrid compound was obtained by DCC-mediated esterification of bis[2-(2-hydroxy-ethoxy)ethyl] 1, 2-methano[70]fullerene-71, 71-dicarboxylate ( 46 ) with an excess of the C60-carboxylic acid 28 . The presence of two different fullerenes in the same molecule was reflected by its UV/VIS spectrum, which displayed the characteristic absorption bands of both the C70 and C60 mono-adducts, but at the same time indicated no electronic interaction between the different fullerene moieties. Cyclic voltammetry showed two reversible reduction steps for 49 , and comparison with the corresponding C70 and C60 mono-adducts 46 and 30 indicated that the three fullerenes in the composite fullerene compound behave as independent redox centers.  相似文献   

3.
Five optically active isomeric C70 bis-adducts with (R)-configured chiral malonate addends were prepared by Bingel cyclopropanation (Scheme 1) and their circular dichroism (CD) spectra investigated in comparison to those of the corresponding five bis-adducts with (S)-configured addends (Fig. 2). Pairs of diastereoisomers, in which the inherently chiral addition patterns on the fullerene surface have an enantiomeric relationship, display mirror-image shaped CD spectra that are nearly identical to those of the corresponding pairs of enantiomers (Fig. 3, b and c). This result demonstrates that the Cotton effects arising from the chiral malonate addends are negligible as compared to the chiroptical contribution of the chirally functionalized fullerene chromophore. A series of four stereoisomeric tetrakis-adducts (Fig. 4) was prepared by Bingel cyclopropanation starting from four stereoisomeric bis-adducts. A comparison of the CD spectra of both series of compounds showed that the magnitude of the Cotton effects does not decrease with increasing degree of functionalization (Fig. 5). Bingel cyclopropanations of C70 in Me2SO are dramatically faster than in apolar solvents such as CCl4, and the reaction of bis-adducts (±)- 13 and 15 with large excesses of diethyl 2-bromomalonate and DBU generated, via the intermediacy of defined tetrakis-adducts (±)- 16 and 17 , respectively, a series of higher adducts including hexakis-, heptakis-, and octakis-adducts (Table 1). A high regioselectivity was observed up to the stage of the hexakis-adducts, whereas this selectivity became much reduced at higher stages of addition. The regioselectivity of the nucleophilic cyclopropanations of C70 correlates with the coefficients of the LUMO (lowest unoccupied molecular orbital) and LUMO+1 at the positions of preferential attack calculated by restricted Hartree-Fock – self-consistent field (RHF-SCF) methods (Figs. 9 – 11). Based on predictions from molecular-orbital calculations (Fig. 11) and the analysis of experimental 13C-NMR data (Fig. 7, a), the structure of a unique hexakis-adduct ((±)- 22 , Fig. 12), prepared from (±)- 13 , was assigned. The C2-symmetrical compound contains four 6−6-closed methanofullerene sub-structures in its polar regions (at the bonds C(1)−C(2), C(31)−C(32), C(54)−C(55), and C(59)−C(60)), and two 6−5-open methanofullerene sub-structures parallel to the equator (at C(22)−C(23) and C(26)−C(27)). The 6−5-open sub-structures are formed by malonate additions to near-equatorial 6−5 bonds with enhanced LUMO coefficients, followed by valence isomerization (Fig. 12).  相似文献   

4.
The covalently templated bis‐functionalization of C70, employing bis‐malonate 5 tethered by an anti‐disubstituted dibenzo[18]crown‐6 (DB18C6) ether, proceeds with complete regiospecificity and provides two diastereoisomeric pairs of enantiomeric C70 crown ether conjugates, (±)‐ 7a and (±)‐ 7b , featuring a five o'clock bis‐addition pattern that is disfavored in sequential transformations (Scheme 1). The identity of (±)‐ 7a was revealed by X‐ray crystal‐structure analysis (Fig. 6). With bis‐malonate 6 containing a syn‐disubstituted DB18C6 tether, the regioselectivity of the macrocylization via double Bingel cyclopropanation changed completely, affording two constitutionally isomeric C70 crown ether conjugates in a ca. 1 : 1 ratio featuring the twelve ( 16 ) and two o'clock ((±)‐ 15 ) addition patterns, respectively (Scheme 3). The X‐ray crystal‐structure analysis of the twelve o'clock bis‐adduct 16 revealed that a H2O molecule was included in the crown ether cavity (Figs. 7 and 8). Two sequential Bingel macrocyclizations, first with anti‐DB18C6‐tethered ( 5 ) and subsequently with syn‐DB18C6‐tethered ( 6 ) bis‐malonates, provided access to the first fullerene bis‐crown ether conjugates. The two diastereoisomeric pairs of enantiomers (±)‐ 28a and (±)‐ 28b were formed in high yield and with complete regioselectivity (Scheme 9). The cation‐binding properties of all C70 crown‐ether conjugates were determined with the help of ion‐selective electrodes (ISEs). Mono‐crown ether conjugates form stable 1 : 1 complexes with alkali‐metal ions, whereas the tetrakis‐adducts of C70, featuring two covalently attached crown ethers, form stable 1 : 1 and 1 : 2 host‐guest complexes (Table 2). Comparative studies showed that the conformation of the DB18C6 ionophore imposed by the macrocyclic bridging to the fullerene is not particularly favorable for strong association. Reference compound (±)‐ 22 (Scheme 4), in which the DB18C6 moiety is attached to the C70 sphere by a single bridge only and, therefore, possesses higher conformational flexibility, binds K+ and Na+ ions better by factors of 2 and 20, respectively. Electrochemical studies demonstrate that cation complexation at the crown ether site causes significant anodic shifts of the first reduction potential of the appended fullerene (Table 3). In case of the C70 mono‐crown ether conjugates featuring a five o'clock functionalization pattern, addition of 1 equiv. of KPF6 caused an anodic shift of the first reduction wave in the cyclic voltammogram (CV) by 70 to 80 mV, which is the result of the electrostatic effect of the K+ ion bound closely to the fullerene core (Fig. 14). Addition of 2 equiv. of K+ ions to C70 bis‐crown ether conjugates resulted in the observation of only one redox couple, whose potential is anodically shifted by 170 mV with respect to the corresponding wave in the absence of the salt (Fig. 16). The synthesis and characterization of novel tris‐ and tetrakis‐adducts of C70 are reported (Schemes 5 and 6). Attempts to prepare even more highly functionalized derivatives resulted in the formation of novel pentakis‐ and hexakis‐adducts and a single heptakis‐adduct (Scheme 7), which were characterized by 1H‐ and 13C‐NMR spectroscopy (Fig. 10), as well as matrix‐assisted laser‐desorption‐ionization mass spectrometry (MALDI‐TOF‐MS). Based on predictions from density‐functional‐theory (DFT) calculations (Figs. 12 and 13), structures are proposed for the tris‐, tetrakis‐, and pentakis‐adducts.  相似文献   

5.
Various amphiphilic fullerene derivatives were prepared by functionalization of [5,6]fullerene‐C60Ih (C60) with malonate or bis‐malonate derivatives obtained by esterification of the malonic acid mono‐esters 5 – 7 . Cyclopropafullerene 10 was obtained by protection of the carboxylic acid function of 6 as a tert‐butyl ester, followed by Bingel addition to C60 and a deprotection step (Scheme 2). The preparation of 10 was also attempted directly from the malonic acid mono‐ester 6 under Bingel conditions. Surprisingly, the corresponding 3′‐iodo‐3′H‐cyclopropa[1,9][5,6]fullerene‐C60Ih‐3′‐carboxylate 11 was formed instead of 10 (Scheme 3). The general character of this new reaction was confirmed by the preparation of 15 and 16 from the malonic acid mono‐esters 13 and 14 , respectively (Scheme 4). All the other amphiphilic fullerene derivatives were prepared by taking advantage of the versatile regioselective reaction developed by Diederich and co‐workers which led to macrocyclic bis‐adducts of C60 by a cyclization reaction at the C‐sphere with bis‐malonate derivatives in a double Bingel cyclopropanation. The bis‐adducts 37 – 39 with a carboxylic acid polar head group and four pendant long alkyl chains of different length were prepared from diol 22 and acids 5 – 7 , respectively (Scheme 9). In addition, the amphiphilic fullerene derivatives 45, 46, 49, 54 , and 55 bearing different polar head groups and compound 19 with no polar head group were synthesized (Schemes 11–13, 15, and 5, resp.). The ability of all these compounds to form Langmuir monolayers at the air‐water interface was investigated in a systematic study. The films at the water surface were characterized by their surface pressure vs. molecular area isotherms, compression and expansion cycles, and Brewster‐angle microscopy. The spreading behavior of compound 10 was not good, the two long alkyl chains in 10 being insufficient to prevent aggregation resulting from the strong fullerene‐fullerene interactions. While no films could be obtained from compound 19 with no polar head group, all the corresponding amphiphilic fullerene bis‐adducts showed good spreading characteristics and reversible behavior upon successive compression/expansion cycles. The encapsulation of the fullerene in a cyclic addend surrounded by four long alkyl chains is, therefore, an efficient strategy to prevent the irreversible aggregation resulting from strong fullerene‐fullerene interactions usually observed for amphiphilic C60 derivatives at the air‐water interface. The balance of hydrophobicity to hydrophilicity was modulated by changing the length of the surrounding alkyl chains or the nature of the polar head group. The best results in terms of film formation and stability were obtained with the compounds having the largest polar head group, i.e. 45 and 46 , and dodecyl chains. Finally, the Langmuir films obtained from the amphiphilic fullerene bis‐adducts were transferred onto solid substrates, yielding high‐quality Langmuir‐Blodgett films.  相似文献   

6.
The C3‐symmetrical [60]fullerene‐cyclotriveratrylene (CTV) tris‐adducts (±)‐ 1 (with a trans‐3,trans‐3,trans‐3 addition pattern) and (±)‐ 2 (with an e,e,e addition pattern) were prepared in 11 and 9% yield, respectively, by the regio‐ and diastereoselective tether‐directed Bingel reaction of C60 with the tris‐malonate‐appended CTV derivative (±)‐ 3 (Scheme). This is the first example for tris‐adduct formation by a one‐step tether‐directed Bingel addition. Interchromophoric interactions between the electron‐rich CTV cap and the electron‐attracting fullerene moiety have a profound effect on the electrochemical behavior of the C‐sphere (Fig. 4 and Table 1). The fullerene‐centered first reduction potentials in compounds (±)‐ 1 and (±)‐ 2 are by 100 mV more negative than those of their corresponding tris[bis(ethoxycarbonyl)methano][60]fullerene analogs that lack the CTV cap. A particular interest in (±)‐ 1 and (±)‐ 2 arises from the topological chirality of these molecules. A complete topology study is presented, leading to the conclusion that the four possible classical stereoisomers of the e,e,e regioisomer are topologically different, and, therefore, there exist four different topological stereoisomers (Fig. 6). Interestingly, in the case of the trans‐3,trans‐3,trans‐3 tris‐adduct, there are four classical stereoisomers but only two topological stereoisomers (Fig. 7). An example of a target molecule representing a topological meso‐form is also presented (Fig. 8).  相似文献   

7.
8.
The first systematic electrochemical study by cyclic voltammetry (CV) and rotating-disk electrode (RDE) of the changes in redox properties of covalent fullerene derivatives ( 2 – 11 ) as a function of increasing number of addends is reported. Dialkynylmethanofullerenes 2 – 4 undergo multiple, fullerene-centered reduction steps at slightly more negative potentials than C60 ( 1 ; see Table and Fig. 1). The two C-spheres in the dumbbell-shaped dimeric fullerene derivative 4 show independent, identical redox characteristics. This highlights the insulating character of the sp3-C-atoms in methanofullerenes which prevent through-bond communication of substituent effects from the methano bridge to the fullerene sphere. In the series of mono- through hexakis-adducts 5 – 11 , formed by tether-directed remote functionalization, reductions become increasingly difficult and more irreversible with increasing number of addends (see Table and Fig. 2). Whereas, in 0.1M Bu4NPF6/CH2Cl2, the first reduction of mono-adduct 5 occurs reversibly at ?1.06 V vs. the ferrocene/ferricinium couple (Fc/Fc+), hexakis-adduct 11 is reduced irreversibly only at ? 1.87 V. Hence, with incremental functionalization of the fullerene, the LUMO of the remaining conjugated framework is raised in energy. Reduction potentials are also dependent on the relative spatial disposition of the addends on the surface of the fullerene sphere. Observed UV/VIS spectral changes and changes in the chemical reactivity along the series 5 – 11 are in accord with the results of electrochemical measurements. Further, with increasing number of addends, the oxidation of derivatives 5 – 11 becomes more reversible. Whereas oxidations are increasingly facilitated upon going from mono-adduct 5 (+1.22 V) to tris-adduct 7 (+0.90 V), they occur at nearly the same potential (+0.95 to +0.99 V) in the higher adducts 8 – 11 . This indicates that the oxidations occur in these compounds at a common sub-structural element, for which a ‘cubic’ cyclophane is proposed (see Fig. 3). This sub-structure is fully developed in hexakis-adduct 11 .  相似文献   

9.
The synthesis of the cyclophane-type molecular dyads 1 and 1 . Zn was accomplished by Bingel macrocyclization of porphyrin-tethered bis-malonates 5 or 5 . Zn , respectively, with C60 (Scheme). In these macrocycles, the doubly bridged porphyrin adopts a close, tangential orientation relative to the surface of the C-sphere. The porphyrin derivatives 6 and 6 . Zn with two appended, singly-linked C60 moieties were also formed as side products in the Bingel macrocyclizations. The trans-1 addition pattern of the fullerene moiety in 1 and 1 . Zn was unambiguously established by 1H- and 13C-NMR spectroscopy. Due to the close spatial relationship between the fullerene and porphyrin components in 1 and 6 and the corresponding ZnII complexes, the porphyrin fluorescence is efficiently quenched as compared to the luminescence emitted by 5 and 5 . Zn , respectively (Fig. 2). Cyclic-voltammetry studies show that the mutual electronic effects exerted by the fullerene on the porphyrin and vice versa in 1 and 1 . Zn are relatively small despite the close proximity between the porphyrin donor and the fullerene acceptor (Fig. 3).  相似文献   

10.
The macrocyclization between buckminsterfullerene, C60, and bis-malonate derivatives in double Bingel reaction provides a versatile and simple method for the preparation of covalent bis-adducts of C60 with high regio- and diastereoselectivity. A combination of spectral analysis, stereochemical considerations, and X-ray crystallography (Fig. 2) revealed that out of the possible in-in, in-out, and out-out stereoisomers, the reaction of bis-malonates linked by o-, m-, or p-xylylene tethers afforded only the out-out ones (Scheme 1). In contrast, the use of larger tethers derived from 1,10-phenanthroline also provided a first example, (±)- 19 (Scheme 2), of an in-out product. Starting from optically pure bis-malonate derivatives, the new bis-functionalization method permitted the diastereoselective preparation of optically active fullerene derivatives (Schemes 4 and 5) and, ultimately, the enantioselective preparation (enantiomeric excess ee > 97%) of optically active cis-3 bis-adducts whose chirality results exclusively from the addition pattern (Fig. 6). The macrocyclic fixation of a bis-malonate with an optically active, 9,9′-spirobi[9H-fluorene]-derived tether to C60 under generation of 24 and ent- 24 with an achiral addition pattern (Scheme 4) was found to induce dramatic changes in the chiroptical properties of the tether chromophore such as strong enhancement and reversal of sign of the Cotton effects in the circular dichroism (CD) spectra (Figs. 4 and 5). By the same method, the functionafized bis-adducts 50 and 51 (Schemes 10 and 11) were prepared as initiator cores for the synthesis of the fullerene dendrimers 62 , 63 , and 66 (Schemes 12 and 13) by convergent growth. Finally, the new methodology was extended, to the regio- and diastereoselective construction of higher cyclopropanated adducts. Starting from mono-adduct 71 , a clipping reaction provided exclusively the all-cis-2 tris-adduct (±)- 72 (Scheme 14), whereas the similar reaction of bis-adduct 76 afforded the all-cis-2 tetrakis-adduct 77 (Scheme 15). Electrochemical investigations by steady-state voltammetry (Table 2) in CH2Cl2 (+0.1M Bu4NPF6) showed that all macroeyciic bis(methano)fullerenes underwent multiple reduction steps, and that regioisomerism was not much influencing the redox potentials, All cis-2 bis-adducts gave an instable dianion which decomposed during the electrochemical reduction. In CH2Cl2, the redox potential of the fullerene core in dendrimers 62, 63 , and 66 is not affected by differences in size and density of the surrounding poly(ether-amide) dendrons. The all-cis-2 tris- and tetrakis(meihano)fullercnes (±) -72 and 77 , respectively, are reduced at more negative potential than previously reported all-e tris- and tetrakis-adducts with methane bridges that are also located along an equatorial belt. This indicates a larger perturbation of the original fullerene π-chromophore and a larger raise in LUMO energy in the former derivatives.  相似文献   

11.
By the tether-directed remote functionalization method, a series of bis- to hexakis-adducts of C60, i.e., 1 – 7 (Fig. 1), had previously been prepared with high regioselectivity. An efficient method for the removal of the tether-reactive-group conjugate was now developed and its utility demonstrated in the regioselective synthesis of bis- to tetrakis(methano)fullerenes ( = di- to tetracyclopropafullerenes-C60-Ih) 9 – 11 starting from 4, 5, and 7, respectively (Schemes 2, 4, and 5). This versatile protocol consists of a 1O2 ene reaction with the two cyclohexene rings in the starting materials, reduction of the formed mixture of isomeric allylic hydroperoxides to the corresponding alcohols, acid-promoted elimination of H2O to cyclohexa-1,3-dienes, Diels-Alder addition of dimethyl acetylenedicarboxylate, retro-Diels-Alder addition, and, ultimately, transesterification. In the series 9 – 11 , all methano moieties are attached along an equatorial belt of the fullerene. Starting from C2v-symmetrical tetrakis-adduct 15 , transesterification with dodecan-1-ol or octan-1-ol yielded the octaesters 16 and 17 , respectively, as noncrystalline fullerene derivatives (Scheme 3). The X-ray crystal structure of a CHCl3 solvate of 11 (Fig. 3) showed that the residual conjugated π-chromophore of the C-sphere is reduced to two tetrabenzopyracylene substructures connected by four biphenyl-type bonds (Fig. 5). In the eight six-membered rings surrounding the two pyracylene (= cyclopent[fg]acenaphthylene) moieties, 6–6 and 6–5 bond-length alteration (0.05 Å) was reduced by ca. 0.01 Å as compared to the free C60 skeleton (0.06 Å) (Fig. 4). The crystal packing (Fig. 6) revealed short contacts between Cl-atoms of the solvent molecule and sp2- and sp3-C-atoms of the C-sphere, as well as short contacts between Cl-atoms and O-atoms of the EtOOC groups attached to the methano moieties of 11 . The physical properties and chemical reactivity of compounds 1 - 11 were comprehensively investigated as a function of degree and pattern of addition and the nature of the addends. Methods applied to this study were UV/VIS (Figs. 7–11), IR, and NMR spectroscopy (Table 2), cyclic (CV) and steady-state (SSV) voltammetry (Table 1), calculations of the energies of the lowest uunoccupied mmolecular orbitals (LUMOs) and electron affinities (Figs. 12 and 13), and evaluation of chemical reactivity in competition experiments. It was found that the properties of the fullerene derivatives were not only affected by the degree and pattern of addition but also, in a remarkable way, by the nature of the addends (methano vs. but-2-ene-1, 4-diyl) anellated to the C-sphere. Attachment of multiple thano moieties along an equatorial belt as in the series 8 – 11 induces only a small perturbation of the original fullerene π-chromophore. In general, with increasing attenuation of the conjugated fullerene π-chromophore, the optical (HOMO-LUMO) gap in the UV/VIS spectrum is shifted to higher energy, the number of reversible one-electron reductions decreases, and the first reduction potential becomes increasingly negative, the computed LUMO energy increases and the electron affinity decreases, and the reactivity of the fullerene towards nucleophiles and carbenes and as dienophile in cycloadditions decreases.  相似文献   

12.
On the way to the fullerene-acetylene hybrid carbon allotropes 2 and 6 , the oxidative homocoupling of the 2-functionalized 1-ethynylated C60 derivatives 11, 12, 14 , and 15 was investigated. Under Glaser-Hay conditions, the two soluble dumbbell-shaped bisfullerenes 17 and 18 , with two C60 moieties linked by a buta-1,3-diynediyl bridge, were formed in 52 and 82% yield, respectively (Scheme 2). Cyclic-voltammetric measurements revealed that there is no significant electronic communication between the two fullerene spheres via the buta-1,3-diynediyl linker. Removal of the 3,4,5,6-tetrahydro-2H-pyran-2-yl (Thp) protecting groups in 18 gave in 80% yield the highly insoluble dumbbell 19 with methanol groups in the 2,2′-positions of the buta-1,3-diynediyl-bridged carbon spheres. Attempted conversion of 19 to the all-carbon dianion 6 (C) via base-induced elimination of formaldehyde was not successful presumably due to exo-dig cyclization of the formed alkoxides. The occurrence of this cyclization under furan formation was proven for 2-[4-(trimethylsilyl)buta-1,3-diyn-1-yl][60]fullerene-1-methanol ( 21 ), a soluble model compound for 19 (Scheme 3). To compare the properties of ethynylated fullerene mono-adducts to those of corresponding higher adducts, hexakis-adducts 26 and 28 with an octahedral functionalization pattern resulting from all-e (equatorial) additions were prepared by the reversible-template method of Hirsch (Scheme 4). Reaction of the ethynylated mono-adducts 25 or 13 with diethyl 2-bromomalonate/1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in the presence of 1,9-dimethylanthracene (DMA) as reversible template led to 26 and 28 in 28 and 22% yield, respectively. Preliminary experiments indicated a significant change in reactivity and NMR spectral properties of the fullerene addends with increasing degree of functionalization.  相似文献   

13.
We report the synthesis and physical properties of novel fullerene–oligoporphyrin dyads. In these systems, the C‐spheres are singly linked to the terminal tetrapyrrolic macrocycles of rod‐like meso,meso‐linked or triply‐linked oligoporphyrin arrays. Monofullerene–mono(ZnII porphyrin) conjugate 3 was synthesized to establish a general protocol for the preparation of the target molecules (Scheme 1). The synthesis of the meso,meso‐linked oligopophyrin–bisfullerene conjugates 4 – 6 , extending in size up to 4.1 nm ( 6 ), was accomplished by functionalization (iodination followed by Suzuki cross‐coupling) of the two free meso‐positions in oligomers 21 – 23 (Schemes 2 and 3). The attractive interactions between a fullerene and a ZnII porphyrin chromophore in these dyads was quantified as ΔG=−3.3 kcal mol−1 by variable‐temperature (VT) 1H‐NMR spectroscopy (Table 1). As a result of this interaction, the C‐spheres adopt a close tangential orientation relative to the plane of the adjacent porphyrin nucleus, as was unambiguously established by 1H‐ and 13C‐NMR (Figs. 9 and 10), and UV/VIS spectroscopy (Figs. 13–15). The synthesis of triply‐linked diporphyrin–bis[60]fullerene conjugate 8 was accomplished by Bingel cyclopropanation of bis‐malonate 45 with two C60 molecules (Scheme 5). Contrary to the meso,meso‐linked systems 4 – 6 , only a weak chromophoric interaction was observed for 8 by UV/VIS spectroscopy (Fig. 16 and Table 2), and the 1H‐NMR spectra did not provide any evidence for distinct orientational preferences of the C‐spheres. Comprehensive steady‐state and time‐resolved UV/VIS absorption and emission studies demonstrated that the photophysical properties of 8 differ completely from those of 4 – 6 and the many other known porphyrin–fullerene dyads: photoexcitation of the methano[60]fullerene moieties results in quantitative sensitization of the lowest singlet level of the porphyrin tape, which is low‐lying and very short lived. The meso,meso‐linked oligoporphyrins exhibit 1O2 sensitization capability, whereas the triply‐fused systems are unable to sensitize the formation of 1O2 because of the low energy content of their lowest excited states (Fig. 18). Electrochemical investigations (Table 3, and Figs. 19 and 20) revealed that all oligoporphyrin arrays, with or without appended methano[60]fullerene moieties, have an exceptional multicharge storage capacity due to the large number of electrons that can be reversibly exchanged. Some of the ZnII porphyrins prepared in this study form infinite, one‐dimensional supramolecular networks in the solid state, in which the macrocycles interact with each other either through H‐bonding or metal ion coordination (Figs. 6 and 7).  相似文献   

14.
Nucleophilic Bingel cyclopropanation of D2-C76 with bis[(S)-1-phenylbutyl] 2-bromomalonate in toluene in the presence of base yielded three constitutionally isomeric pairs of diastereoisomeric mono-adducts together with one other constitutional isomer. All seven mono-adducts were isolated in optically pure form by prep. HPLC on a (S,S)-Whelk-O1 chiral stationary phase. They represent the first optically pure adducts of an inherently chiral fullerene. Characterization by UV/VIS, CD, 13C- and 1H-NMR spectroscopy allowed identification of pairs of stereoisomers and symmetry assignments: the two pairs of diastereoisomers which were isolated as the major product possess C1 symmetry, whereas the third pair of diastereoisomers, which is a minor product, is C2-symmetrical. The circular dichroism spectra of the optically active C76-adducts showed very pronounced Cotton effects resulting from strong chiroptical contributions of the chiral fullerene chromophore with the maximum observed Δε values being twice as high than those previously measured for optically active adducts of achiral fullerenes with a chiral addition pattern. Whereas the regioselectivity of mono-additions to C70 correlates with the degree of local bond curvature and the regioselectivity of multiple Bingel cyclopropanations of C60 with electronic parameters such as coefficients of the lowest unoccupied molecular orbital (LUMO), no such simple predictive correlations exist for the nucleophilic addition to C76. Despite full spectral characterization, an unambiguous structural assignment of the isolated compounds was not possible, except for the two C2-symmetrical isomers. Based on considerations of local bond curvature and the previous experiences with the chemistry of C70, the structures of the C2-symmetrical stereoisomers were assigned as (S,S,fC)- 3 and (S,S,fA)- 3 , resulting from addition to the polar α-type C(1)? C(6) bond.  相似文献   

15.
A series of optically active cis‐3 bis‐adducts, such as (R,R,fC)‐ 16 (Scheme 6), was obtained regio‐ and diastereoselectively by Bingel macrocyclization of C60 with bis‐malonates, which contain optically active tethers derived from 1,2‐diols. The absolute configuration of the inherently chiral addition pattern in cis‐3 bis‐adducts had previously been determined by comparison of calculated and experimental circular dichroism (CD) spectra. Full confirmation of these earlier assignments was now obtained by an independent method based on semiempirical AM1 (`Austin Model 1') and OM2 (`Orthogonalization Method 2') calculations combined with 1H‐NMR spectroscopy. It was found computationally that bis‐malonates [CHR(OCOCH2COOEt)]2, which contain (R,R)‐ or (S,S)‐butane‐2,3‐diol derivatives as optically active tethers, preferentially form out‐out cis‐3 bis‐adducts of C60 as a single diastereoisomer in which the alkyl groups R adopt a gauche conformation, while the two glycolic H‐atoms are in an antiperiplanar (ap) and the ester linkages to the fullerene in a gauche relationship (Figs. 2 and 5). In contrast, in the less favorable diastereoisomer, which should not form, the alkyl groups R adopt an ap and the H‐atoms a gauche conformation, while the ester bridges to the fullerene remain, for geometric reasons, locked in a gauche conformation. According to the OM2 calculations, the geometry of the fully staggered tether in the free bis‐malonates closely resembles the conformation of the tether fragment in the bis‐adducts formed. These computational predictions were confirmed experimentally by the measurement of the coupling constant between the vicinal glycolic H‐atoms in the 1H‐NMR spectrum. For (R,R,fC)‐ 16 , 3J(H,H) was determined as 7.9 Hz, in agreement with the ap conformation, and, in combination with the calculations, this allowed assignment of the fC‐configuration to the inherently chiral addition pattern. This conformational analysis was further supported by the regio‐ and diastereoselective synthesis of cis‐3 bis‐adducts from bis‐malonates, including tethers derived from cyclic glycol units with a fixed gauche conformation of the alkyl residues R at the glycolic C‐atoms. Thus, a bis‐malonate of (R,R)‐cyclohexane‐1,2‐diol provided exclusively cis‐3 bis‐adduct (R,R,fC)‐ 20 in 32% yield (Scheme 7). Incorporation of a tether derived from methyl 4,6‐O,O‐benzylidene‐α‐D ‐glucopyranoside into the bis‐malonate and Bingel macrocyclization diastereoselectively produced the cis‐3 stereoisomer (α,D ,fA)‐ 22 (Scheme 8) as the only macrocyclic bis‐adduct. If the geometry of the alkyl groups R at the glycolic C‐atoms of the tether component deviates from a gauche relationship, as in the case of tethers derived from exo cis‐ and trans‐norbornane‐2,3‐diol or from trans‐cyclopentane‐1,2‐diol, hardly any macrocyclic product is formed (Schemes 5 and 9). The absolute configurations of the various optically active cis‐3 bis‐adducts were also assigned by comparison of their CD spectra, which are dominated by the chiroptical contributions of the inherently chiral fullerene chromophore (Figs. 1, 3, and 4). A strong chiral exciton coupling was observed for optically active macrocyclic cis‐3 bis‐adducts of C60 with two appended 4‐(dimethylamino)benzoate ((S,S,fC)‐ 26 ; Fig. 6) or meso‐tetraphenylporphyrin ((R,R,fC)‐ 28 ; Fig. 7) chromophores. Chiral exciton coupling between two fullerene chromophores was observed for the first time in the CD spectrum of the threitol‐bridged bis‐fullerene (R,R)‐ 35 (Fig. 9).  相似文献   

16.
A new concept for the regioselective synthesis of [3 : 2 : 1] hexakis-adducts of fullerene C60 was developed. Based on sequential tether-directed remote functionalizations, chiral [3 : 2] pentakis-adducts with an incomplete octahedral addition pattern were synthesized via stepwise cyclopropanation of C60 with suitable macrocyclic tri- and bifunctional cyclomalonate tethers. The four resulting stereoisomers were isolated using chiral HPLC. The corresponding pairs of enantiomers show mirror image behavior in their CD-spectra. The pentakis-adducts served as suitable building blocks for the spatially controlled synthesis of mixed hexakis-adducts. Implementation of functional group-bearing monomalonates afforded octahedral [3 : 2 : 1] hexakis-adducts suitable for the construction of larger molecular and supramolecular fullerene architectures in excellent yield.  相似文献   

17.
Bis- and tris-malonates constructed around a silicon atom have been prepared by reaction of malonate derivatives bearing an alcohol function with di-tert-butylsilyl bis(trifluoromethanesulfonate) and tert-butyl(trichloro)silane, respectively. These compounds have been used for the regioselective bis- and tris-functionalization of C60 under Bingel conditions. By changing the nature of the linker between the central Si atom and the reactive malonate groups, the malonate precursors have been optimized to produce specific bis- and tris-adducts with excellent regioselectivity. A complete understanding of the electronic and stereochemical factors governing the regioselectivity has been obtained by combining computational studies with a complete analysis of the by-products formed during the reactions of the Si-tethered tris-malonates with C60. Finally, desilylation reactions of the resulting fullerene bis- and tris-adducts have been carried out to generate the corresponding acyclic fullerene bis- and tris-adducts bearing alcohol functions.  相似文献   

18.
Fluorocyclohexa adducts C60(C4F8) n were synthesized by high-temperature reaction of fullerene C60 with 1,2-C2F4I2 or 1,4-C4F8I2 in sealed tubes. Their separation by HPLC allowed us to determine molecular structure (X-ray diffraction) of four new compounds C6(C4F8) n (n = 2, 3, 4, and 6). Structures of isomers C60(C4F8) n were discussed in terms of a concept of consecutive addition of C4F8 groups to the fullerene cage.  相似文献   

19.
Reactions of the electrochemically generated dianion of [60]fullerene (C602?) with bulky secondary alkyl bromides exhibit different reaction behaviors. Reaction of C602? with diphenylbromomethane gives rise to 1,2-C60HR or 1,4-C60R2 (R?=?CHPh2) adducts, while reaction of C602? with diethyl 2-bromomalonate unexpectedly affords methanofullerene C60?>?CR2 (R?=?CO2Et). Plausible reaction mechanisms have been proposed to explain the formation of the observed products.  相似文献   

20.
The fullerene-crown ether conjugates (±)- 1 to (±)- 3 with trans-1 ((±)- 1 ), trans-2 ((±)- 2 ), and trans-3 ((±)- 3 ) addition patterns on the C-sphere were prepared by Bingel macrocyclization. The trans-1 derivative (±)- 1 was obtained in 30% yield, together with a small amount of (±)- 2 by cyclization of the dibenzo[18]crown-6(DB18C6)-tethered bis-malonate 4 with C60 (Scheme 1). When the crown-ether tether was further rigidified by K+-ion complexation, the yield and selectivity were greatly enhanced, and (±)- 1 was obtained as the only regioisomer in 50% yield. The macrocyclization, starting from a mixture of tethered bis-malonates with anti ( 4 ) and syn ( 10 ) bisfunctionalized DB18C6 moieties, afforded the trans-1 ((±)- 1 , 15%), trans-2 ((±)- 2 , 1.5%), and trans-3 ((±)- 3 , 20%) isomers (Scheme 2). Variable-temperature 1H-NMR (VT-NMR) studies showed that the DB18C6 moiety in C2-symmetrical (±)- 1 cannot rotate around the two arms fixing it to the C-sphere, even at 393 K. The planar chirality of (±)- 1 was confirmed in 1H-NMR experiments using the potassium salts of (S)-1,1′-binaphthalene-2,2′-diyl phosphate ((+)-(S)- 19 ) or (+)-(1S)-camphor-10-sulfonic acid ((+)- 20 ) as chiral shift reagents (Fig. 1). The DB18C6 tether in (±)- 1 is a true covalent template: it is readily removed by hydrolysis or transesterification, which opens up new perspectives for molecular scaffolding using trans-1 fullerene derivatives. Characterization of the products 11 (Scheme 3) and 18 (Scheme 4) obtained by tether removal unambiguously confirmed the trans-1 addition pattern and the out-out geometry of (±)- 1 . VT-NMR Studies established that (±)- 2 is a C2-symmetrical out-out trans-2 and (±)- 3 a C1-symmetrical in-out trans-3 isomer. Upon changing from (±)- 1 to (±)- 3 , the distance between the DB18C6 moiety and the fullerene surface increases and, correspondingly, rotation of the ionophore becomes increasingly facile. The ionophoric properties of (±)- 1 were investigated with an ion-selective electrode membrane (Fig. 2 and Table 2), and K+ was found to form the most stable complex among the alkali-metal ions. The complex between (±)- 1 and KPF6 was characterized by X-ray crystal-structure analysis (Figs. 3 and 4), which confirmed the close tangential orientation of the ionophore atop the fullerene surface. Addition of KPF6 to a solution of (±)- 1 resulted in a large anodic shift (90 mV) of the first fullerene-centered reduction process, which is attributed to the electrostatic effect of the K+ ion bound in close proximity to the C-sphere (Fig. 5). Smaller anodic shifts were measured for the KPF6 complexes of (±)- 2 (50 mV) and (±)- 3 (40 mV), in which the distance between ionophore and fullerene surface is increased (Table 3). The effects of different alkali- and alkaline-earth-metal ion salts on the redox properties of (±)- 1 were investigated (Table 4). These are the first-ever observed effects of cation complexation on the redox properties of the C-sphere in fullerene-crown ether conjugates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号