首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
This study aimed to carry out complete 1H and 13C NMR assignment of 13 protobassic acid saponins, including arganins A–C ( 1 – 3 ) and F ( 4 ), butyrosides B–D ( 5 – 7 ), tieghemelin ( 8 ), 3′-O-glucosyl-arganin C ( 9 ), Mi-saponins A–C ( 10 – 12 ), and mimusopsin ( 13 ), recorded in methanol-d4. This was accomplished by the analysis of high-resolution one-dimensional (1D) NMR (1H and 13C), two-dimensional (2D) NMR (1H–1H COSY, HSQC, and HMBC), and selectively excited 1D TOCSY spectra. Before this study, 1H and 13C NMR data of arganins A–C ( 1 – 3 ) and F ( 4 ) were partially assigned. Our effort leads to their complete assignment, especially the glycon residue, and revises some reported data. Some revisions of the 1H and 13C NMR data in the glycon part of butyroside C ( 6 ), tieghemelin ( 8 ), Mi-saponin A ( 10 ), and mimusopsin ( 13 ) were made. Those data of butyrosides B and D ( 5 & 7 ) and Mi-saponin B ( 11 ), which had not been recorded in methanol-d4, are provided. In addition, the 1H and 13C NMR data of Mi-saponin C ( 12 ) are reported for the first time. These data, being recorded in methanol-d4, should be more friendly for use as a reference for identifying the related triterpenoid saponins.  相似文献   

2.
Abstract

As part of our continuing efforts to explore bioactive compounds from natural resources, a new iridoid glycoside, adoxosidic acid-6′-oleuroperic ester (1), together with one known phenylethanoid glycoside (2) and two known flavonoid glycosides (3–4) were isolated from the fruit of Forsythia suspensa. The structure of the new compound (1) was elucidated through 1D and 2D NMR spectroscopic data and HR-ESIMS. Interestingly, compound 1 was a monoterpene ester of one iridoid glycoside. Compounds 2–4 were identified as calceolarioside A (2), kaempferol-3-O-rutinoside (3), kampferol-3-O-robinobioside (4) on the basis of NMR spectroscopic data analyses and comparison with the data reported in the literature. The antiviral activity aganisist influenza A (H5N1) virus of compound 1 was studied as well.  相似文献   

3.
A series of new base-protected and 5′-O-(4-monomethoxytrityl)- or 5′-O-(4,4′-dimethoxytrityl)-substituted 3′-(2-cyanoethyl diisopropylphosphoramidites) and 3′-[2-(4-nitrophenyl)ethyl diisopropylphosphoramidites] 52 – 66 and 67 – 82 , respectively, are prepared as potential building blocks for oligonucleotide synthesis (see Scheme). Thus, 3′,5′-di-O-acyl- and N 2,3′-O,5′-O-triacyl-2′-deoxyguanosines can easily be converted into the corresponding O6-alkyl derivatives 6 , 8 , 10 , 12 , 14 , and 16 by a Mitsunobu reaction using the appropriate alcohol. Mild hydrolysis removes the acyl groups from the sugar moiety (→ 9 , 11 , 13 , 15 , and 19 (via 18 ), resp.) which can then be tritylated (→ 38 – 42 ) and phosphitylated (→ 57 – 61 ) in the usual manner. N 2-[2-(4-nitrophenyl)ethoxycarbonyl]-substituted and N 2-[2-(4-nitrophenyl)ethoxycarbonyl]-O6-[2-(4-nitrophenyl)ethyl]-substituted 2′-deoxyguanosines 5 and 7 , respectively, are synthesized as new starting materials for tritylation (→ 28 , 35 , and 37 ) and phosphitylation (→ 54 , 56 , 70 , and 78 ). Various O4-alkylthymidines (see 20 – 24 ) are also converted to their 5′-O-dimethoxytrityl derivatives (see 43 – 47) and the corresponding phosphoramidites (see 62 – 66 and 79 – 82 ).  相似文献   

4.
5.
Enantiomeric oligoribonucleotides (= ent-RNA) up to a sequence length of thirty-five and consisting of the (L -configurated) nucleosides ent-adenosine, ent-guanosine, ent-cytidine, ent-uridine, and 1-(β-L -ribofuranosyl)thymine were prepared by automated synthesis from appropriate building blocks, carrying a known photo-labile 2′-O-protecting group. A simple large-scale synthesis of the new, prefunctionalized L -ribose derivative 5 from D -glucose (Scheme 1) and its straightforward conversion into the five phosphoramidites 28 – 32 and five solid supports 38 – 42 , respectively, were elaborated (Scheme 4). Within this project, a novel, superior strategy for the synthesis of the 2′-O-{[(2-nitrobenzyl)oxy]methyl}-substituted key intermediates 18 – 22 by regioselective alkylation of their 5′-O-dimethoxytritylated precursors 13 – 17 was developed. Furthermore, an improved set-up for the final light-induced cleavage of the 2′-O-protecting groups from the oligonucleotide sequences was designed (Scheme 5 and Fig. 1). The correct composition of all ent-oligoribonucleotides prepared was established by their MALDI-TOF mass spectra. The 1H-NMR-spectroscopic data of a dodecameric ent-RNA sequence was in excellent agreement with the published data of its natural counterpart, synthesized by conventional methods. The known specific cleavage of a tetradecamer sequence by a 35mer ribozyme structure could be reproduced by ent-oligoribonucleotides, synthesized by the presented methods (Fig. 4).  相似文献   

6.
Three new medicagenic acid saponins, micranthosides A–C ( 1 – 3 ), were isolated from the roots of Polygala micrantha Guill . & Perr ., along with six known presenegenin saponins. Their structures were elucidated on the basis of extensive 1D‐ and 2D‐NMR experiments (1H, 13C, DEPT, COSY, TOCSY, NOESY, HSQC, and HMBC) and mass spectrometry as 3‐Oβ‐D ‐glucopyranosylmedicagenic acid 28‐[Oβ‐D ‐galactopyranosyl‐(1→4)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐fucopyranosyl] ester ( 1 ), 3‐Oβ‐D ‐glucopyranosylmedicagenic acid 28‐[O‐6‐O‐acetyl‐β‐D ‐galactopyranosyl‐(1→4)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐fucopyranosyl] ester ( 2 ), and 3‐O‐{Oβ‐D ‐glucopyranosyl‐(1→3)‐O‐[β‐D ‐glucopyranosyl‐(1→6)]‐β‐D ‐glucopyranosyl}medicagenic acid 28‐{Oβ‐D ‐apiofuranosyl‐(1→3)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐O‐[β‐D ‐apiofuranosyl‐(1→3)]‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐fucopyranosyl} ester ( 3 ). Compounds 1 – 3 were evaluated against HCT 116 and HT‐29 human colon cancer cells, but they did not show any cytotoxicity.  相似文献   

7.
High-speed counter-current chromatography (HSCCC) was applied to the preparative isolation and purification of peonidin 3-O-(6-O-(E)-caffeoyl-2-O-β-D -glucopyranosyl-β-D -glucopyranoside)-5-O-β-D -glucoside ( 1 ), cyanidin 3-O-(6-O-p-coumaroyl)-β-D -glucopyranoside ( 2 ), peonidin 3-O-(2-O-(6-O-(E)-caffeoyl-β-D -glucopyranosyl)-6-O-(E)-caffeoyl-β-D -glucopyranoside)-5-O-β-D -glucopyranoside ( 3 ), peonidin 3-O-(2-O-(6-O-(E)-feruloyl-β-D -glucopyranosyl)-6-O-(E)-caffeoyl-β-D -glucopyranoside)-5-O-β-D -glucopyranoside ( 4 ) from purple sweet potato. Separation of crude extracts (200 mg) from the roots of purple sweet potato using methyl tert-butyl ether/n-butanol/acetonitrile/water/trifluoroacetic acid (1:4:1:5:0.01, v/v) as the two-phase solvent system yielded 1 (15 mg), 2 (7 mg), 3 (10 mg), and 4 (12 mg). The purities of 1 – 4 were 95.5%, 95.0%, 97.8%, and 96.3%, respectively, as determined by HPLC. Compound 2 was isolated from purple sweet potato for the first time. The chemical structures of these components were identified by 1H NMR, 13C NMR and ESI-MSn.  相似文献   

8.
Five new acyclic monoterpene glycosides 1 – 5 were isolated from the leaves of Viburnum orientale (Caprifoliaceae). Anatolioside ( 1 ) is a monoterpene diglycoside and its structure was elucidated as linalo-6-yl 2′-O-(α-L -rhamnopyranosyl)β-D -glucopyranoside (arbitrary numbering of linalool moiety). Compounds 2 – 5 are all derivatives of 1 , containing additional monoterpene and sugar units, connected by ester and glycoside bonds. Their structures were established as linalo-6-yl O-[(2E,6R)-6-hydroxy-2, 6-dimethylocta-2,7-dienoyl]-(1? → 4″)-O-α-L -rhamnopyranosyl-(1″? → 2″″)-β-D -glucopyranoside ( = anatolioside A; 2 ), linalo-6-yl O-β-D -glucopyranosyl-(1? → 6?)-O-[(2E,6R)-6-hydroxy-2,6-dimethylocta-2,7-dienoyl]-(1? → 4″)-O-α-L -rhamnopyranosyl-(1″ → 2′)–β-D -glucopyranoside ( = anatolioside B; 3 ), linalo-6-yl O-β-D ribo-hexopyranos-3-ulosyl-(1′? → 6?)-O-[(2E,6R)-6-hydroxy-2,6-dimethylocta-2,7-dienoyl]-(1? → 4″)-O-α-L -rhamnopyranosyl-(1″ → 2′)-β-D -glucopyranoside ( = anatolioside C; 4 ) and linalo-6-yl O-[(2E, 6R)-6-hydroxy-2,6-dimethylocta-2,7-dienoyl]-(1″? → 2″″)-O-β-D -glucopyranosly-(1″″ → 6?)-O-[(2E,6R)-6-hydroxy-2,6-dimethylocta-2,7-dienoyl]-(1? → 4″)-O-α-L -rhamnopyranosyl(1″ → 2′)-β-D -glucopyranoside ( = anatolioside D ; 5 ). The structure determinations were based on spectroscopic and chemical methods (acid and alkaline hydrolysis, acetylation and methylation).  相似文献   

9.
Solvothermal combination of trivalent lanthanide metal precursors with 1, 2, 4, 5‐cyclohexanetetracarboxylic acid (L) ligand has afforded the preparation of a family of eight new coordination polymers [Ln4(L)3(H2O)10] · 7H2O (Ln = Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb) ( 1 – 8 ). Structural analyses reveal that the 1, 2, 4, 5‐cyclohexanetetracarboxylic acid ligand with e,a,a,e (LI) conformation displays a μ4‐(κ3O, O, O5)(κ2O2,O2)(κ2O4,O4)‐bridging mode to generate 3D frameworks of complexes 1 – 8 and the α‐Po topology with the short Schläfli symbol {412.63} could be observed in complexes 1 – 8 . The near‐infrared luminescence properties were studied, and the results have shown that the HoIII, ErIII, and YbIII complexes emit typical near‐infrared luminescence in the solid‐state. Variable‐temperature magnetic susceptibility measurements of complexes 2 – 7 have shown that complex 2 (Gd) shows the ferromagnetic coupling between magnetic centers, whereas the complexes 3 – 7 show the antiferromagnetic coupling between magnetic centers. Additionally, the thermogravimetric analyses were discussed.  相似文献   

10.
Examination of the polar components of the green seaweed Caulerpa taxifolia (Vahl ) C. Agardh , which is heavily spreading in the northeastern Mediterranean, led to two families of compounds. The new (2R)-3-O-β-D -galactopyranosyl-1-O-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]-2-O-[(9Z,12Z,15Z)-octadeca-1,12,15-trienoyl]-sn-glycerol ( 2 ) was isolated in low abundance, like the analogues 1 and 3 already known from freshwater cyanobacteria. The acyl positions in 1 – 3 were determined by enzymatic methods and the absolute configuration from the O-galactosylglycerol obtained upon alcaline methanolysis. More abundant were the (4-hydroxyphenyl)- and (3,4-dihydroxyphenyl)pyruvic acid methyl esters, occurring in the enol (Z) forms 13a and 14a accompanied by very minor (E) forms 13b and 14b . The latter became predominant on UV irradiation of 13a or 14a , allowing the determination of the C=C configuration of these isolatable, stable enols from 1H,13C NMR couplings (larger H−C(3)/C(1) coupling constant in the (E) than in the (Z) isomer). Contrary to literature implications, the O-galactosylglycerolipids 1 – 3 lack any cholinergic or histaminergic activity; similarly, enols (= α-keto esters) 13 and 14 or terpenoids of this seaweed were also devoid of such biological activities (see Table).  相似文献   

11.
Conjugates of ferrocene with steroidal estrogens as selective antiproliferative agents against hormone-dependent breast cancer cells are believed to be limited by the inherent estrogenicity of the conjugates. Motivated by a significant cytotoxicity of the ester of ferrocenecarboxylic acid and the phenolic group of estradiol toward such a cell line, we decided to explore other a -ring-tethered ferrocene–estra-1,3,5(10)-triene conjugates; in this study, ferrocenylmethylation of estradiol and estrone with (ferrocenylmethyl)trimethylammonium iodide in the presence of potassium carbonate yielded five new compounds ( 1 – 5 ). In dimethylformamide, only O-alkylated products formed ( 1 and 3 ), while a mixture of O- and C-alkylated products was obtained when methanol was used ( 2 , 4 , and 5 in addition to 1 and 3 ). All compounds were characterized using 1D and 2D NMR, IR, UV–Vis, and high-resolution mass spectrometry. Two of the conjugates, a 3-O- and a 4-C-alkylated derivative of estrone ( 3 and 4 , respectively), were also analyzed using single-crystal X-ray diffraction. A cyclic voltammetric investigation of the electrochemical properties of 1 – 5 was performed. While some of the compounds were shown to have a slight-to-moderate antiproliferative activity against at least one of the six tested human tumor cell lines and were nontoxic to (the noncancerous) fetal human fibroblasts, compound 2 (4-(ferrocenylmethyl)estra-1,3,5(10)-triene-3,17β-diol) with an IC50 value of 0.34 μM was found to be more active against the hormone-dependent breast cancer cell line MCF-7 than doxorubicin. These results suggest that a -ring substitution of steroidal estrogens is a plausible strategy for preparing other ferrocene–steroid conjugates acting against tumor cells.  相似文献   

12.
Four new triterpenoid saponins were isolated from the roots of Adina rubella Hance. They were characterized as adinaic acid 3β-O-[α-L-rhamnopyranosyl(l→2)-β-D-glucopyranosyl(l→2)-β-D-glucurono-pyranoside-6-O-methyl ester]-28-O-β-D)-glucopyranoside, adinaic acid 3β-O-[α-L-rham-nopyranosyl(l→2)-β-D-glucopyranosyl(l→2)-β-D-glucuronopyranoside-6-O-butyl ester]-28-O-β-D-glu-copyranoside, adinaic acid 3β-O-[β-D-glucopyranosyl(l→2)-β-D-glucopyranosyl]-(28→1)-β-D-gluco-pyranosyl(l→6)-β-D-glucopyranosyl ester, 27-hydroxyursolic acid 3β-O-[α-L-rhamnopyranosyl (l→2)-β-O-glucopyranosyl(l→2)-β-D)-glucuronopyranoside-6-O-methyl ester]-28-O-β-D)-glucopyranoside. Their structures were elucidated by spectral methods, especially with the aid of 2D NMR techniques. Their complete assignments of the 1H and 13C NMR signals were carried out.  相似文献   

13.
Eight new benzoylated gentisyl alcohol (=2‐(hydroxymethyl)benzene‐1,4‐diol) glucosides, itosides A–H ( 1 – 8 ), together with the new pyrocatechol (=benzene‐1,2‐diol) glycoside itoside I ( 9 ) were isolated from the bark and twigs of Itoa orientalis (Flacourtiaceae). In itosides B–D ( 2 – 4 ), the gentisyl alcohol moiety was esterified by 1‐hydroxy‐6‐oxocyclohex‐2‐ene‐1‐carboxylic acid, while itosides E–H ( 5 – 8 ) contained instead an additional 2‐hydroxybenzoic acid moiety. The compounds were accompanied by the known derivatives 4‐hydroxytremulacin ( 10 ), poliothyrsoside ( 11 ), poliothyrsin ( 12 ), homaloside D ( 13 ), tremulacin, and pyrocatechol β‐D ‐glucopyranoside. The structures of the new compounds were elucidated by spectral and chemical methods.  相似文献   

14.
Various condensed areno[g]lumazine derivatives 2 , 3 , and 5 – 7 were synthesized as new fluorescent aglycones for glycosylation reactions with 2-deoxy-3, 5-di-O-(p-toluoyl)-α/β-D -erythro-pentofuranosyl chloride ( 10 ) to form, in a Hilbert-Johnson-Birkofer reaction, the corresponding N1-(2′-deoxyribonucleosides) 15 – 21 . The β-D -anomers 15 , 17 , 19 , and 21 were deblocked to 24 – 27 and, together with N1-(2′-deoxy-β-D -ribofuranosyl)lumazine ( 22 ) and its 6, 7-diphenyl derivative 23 , dimethoxytritylated in 5′-position to 28–33. These intermediates were then converted into the 3′-(2-cyanoethyI diisopropylphosphoramidites) 34 – 39 which function as monomeric building block in oligonucleotide syntheses as well as into the 3′-(hydrogen succinates) 40 – 45 which can be used for coupling with the solid-support material. A series of lumazine-modified oligonucleotides were synthesized and the influence of the new nucleobases on the stability of duplex formation studied by measuring the Tm values in comparison to model sequences. A substantial increase in the Tm is observed on introduction of areno[g]lumazine moieties in the oligonucleotide chain stabilizing obviously the helical structures by improved stacking effects. Stabilization is strongly dependent on the site of the modified nucleobase in the chain.  相似文献   

15.
Synthesis of 2-Substituted Imidazole Nucleosides Condensation of the trimethylsilyl derivatives of 2-substituted diethyl and dimethyl imidazole-4,5-dicarboxylates ( 3–5 and 7–9 ) with 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D -ribofuranose ( 2 ) in the presence of trimethysilyl trifluoromethanesulfonate provided the 2-substituted diethyl and dimethyl 1-(2′,3′, 5′-tri-O-benzoyl-β-D -ribofuranosyl)imidazole-4, 5-dicarboxylates 10–15 . These were treated with ammonia to afford the 2-substituted 1-(β-D -ribofuranosyl)imidazole-4,5-dicarboxamides 16–21 . Treatment of 2-methyl-( 16 ) and 2-ethyl-1-(β-D -ribofuranosyl)imidazole-4,5-dicarboxamide ( 17 ) with fuming nitric acid in oleum at ?30° yielded the nitric acid esters 23 and 24 . Besides the esterification of the sugar hydroxyl groups one H-atom of the imidazolecarboxamide function at C(5) in these nucleosides was also substituted by the NO2 group. The conformations in solution of 16 and 23 have been determined by 1H- and 13C-NMR. spectroscopy. These studies indicate that the nucleosides exist in dimethyl-sulfoxide solution preferentially in the S-gg-syn-conformation ( 16 ) and N-gt-conformation ( 23 ). In the crystal structure of nucleoside 23 , the ribose was found to be in the O(1′)endo, C(1′)exo twist conformation. The conformation about C(4′), C(5′) is gauche-trans and the molecule exists in the syn form.  相似文献   

16.
Two new phenolic compounds, 4-O-glucopyranosyl-5-O-caffeoylshikimic acid (1) and 2,3-digalloyl oregonin (2), were isolated along with eight known phenolic compounds (310) from an 80% acetone extract of Alnus sibirica leaves. The chemical structures of these compounds were elucidated using 1D/2D nuclear magnetic resonance and high resolution-MS. The anti-oxidative activities of these compounds were determined by assaying their 1,1-diphenyl-2-picrylhydrazyl radical and nitroblue tetrazolium superoxide anion scavenging activity. All of the isolated phenolic compounds (110) exhibited potent anti-oxidative activities. In particular, 2 and 4, which are diarylheptanoids, and 10 which is ellagitannin exhibited excellent anti-oxidative activities with almost the same potency as that of the positive controls L-ascorbic acid and allopurinol.  相似文献   

17.
Eremosides A–C ( 1 – 3 ), three new iridoid glucosides, were isolated from the AcOEt‐soluble fraction of the EtOH extract of the whole plant of Eremostachys loasifolia, along with buddlejoside B ( 4 ), 10‐O‐benzoylcatalpol ( 5 ), and pakiside A ( 6 ) reported for the first time from this species. The structures of these compounds were elucidated by spectroscopic data including 2D‐NMR, FAB‐MS, ESI‐MS, as well as by acid and basic hydrolyses.  相似文献   

18.
Two new metabolites have been isolated from cultures of Chaetomium globosum. The structures of 19-O-acetylchaetoglobosin B ( 4 ) and 19-O-acetylchaetoglobosin D ( 5 ) are assigned. The 13C-NMR. spectra of chaetoglobosin A ( 1 ), 19-O-acetylchaetoglobosin A ( 2 ), chaetoglobosin C ( 3 ), 19-O-acetylchaetoglobosin B ( 4 ), 19-O-acetylchaetoglobosin D ( 5 ) and of cytochalasin G ( 6 ), a (3-indolyl)-[11]cytochalasan isolated from Pseudeurotium zonatum, have been interpreted.  相似文献   

19.
Phytochemical investigation of the 1-butanol soluble fraction of 60% ethanol extract of the seeds of Celosia cristata L. led to the identification of three new oleanane-type triterpenoid saponins. Using 1D and 2D NMR experiment methods, ESI-MS analysis and acid hydrolysis, their structures were identified as 3-O-[β-D-xylopyranosyl-(1 → 3)-β-D-glucuronopyranosyl]-2β-hydroxy-oleanolic acid-28-O-β-D-glucopyranoside (1), 3-O-[β-D-xylopyranosyl-(1 → 3)-β-D-glucuronopyranosyl]-2β, 23-dihydroxy-oleanolic acid-28-O-β-D-glucopyranoside (2) and 3-O-[β-D-glucopyranosyl-(1 → 4)-β-D-glucopyranosyl]-2-hydroxyl-medicagenic acid-28-O-β-D-glucopyranosyide (3), respectively.  相似文献   

20.
Chemical investigation of the anomalous fruits of Gleditsia sinensis led to the isolation and identification of a new triterpenoid saponin, 3-O-β-D-xylopyranosyl-(1 → 2)-α-L-arabinopyranosyl-(1 → 6)-β-D-glucopyranosyl oleanolic acid 28-O-β-D-xylopyranosyl-(1 → 4)-α-L-rhamnopyrano--syl-(1 → 4)-β-D-xylopyranosyl-(1 → 4)-α-L-rhamnopyranosyl-(1 → 3)-β-D-glucopyranosyl ester (1), along with other nine known compounds (210). All the isolates from this species were reported for the first time. The structure of Compound 1 was determined by a detailed analysis using various analytical techniques, including 1D and 2D NMR. In vitro antiproliferative activities of Compound 1 on MCF-7 and Hep-G2 tumor cell lines were evaluated. IC50 values against the two cell lines were 9.5 and 11.6 μM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号