首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The synthesis of ansa complexes has been studied intensively owing to their importance as homogeneous catalysts and as precursors of metal‐containing polymers. However, paramagnetic non‐metallocene derivatives are rare and have been limited to examples with vanadium and titanium. Herein, we report an efficient procedure for the selective dilithiation of paramagnetic sandwich complex [Cr(η5‐C5H5)(η6‐C6H6)], which allows the preparation of a series of [n]chromoarenophanes (n=1, 2, 3) that feature silicon, germanium, and tin atoms at the bridging positions. The electronic and structural properties of these complexes were probed by X‐ray diffraction analysis, cyclic voltammetry, and by UV/Vis and EPR spectroscopy. The spectroscopic parameters for the strained and less strained complexes (i.e., with multiple‐atom linkers) indicate that the unpaired electron resides primarily in a d orbital on chromium(I); this result was also supported by density functional theory (DFT) calculations. We did not observe a correlation between the experimental UV/Vis and EPR data and the degree of molecular distortion in these ansa complexes. The treatment of tin‐bridged complex [Cr(η5‐C5H4)(η6‐C6H5)SntBu2] with [Pt(PEt3)3] results in the non‐regioselective insertion of the low‐valent Pt0 fragment into the Cipso? Sn bonds in both the five‐ and six‐membered rings, thereby furnishing a bimetallic complex. This observed reactivity suggests that ansa complexes of this type are promising starting materials for the synthesis of bimetallic complexes in general and also underline their potential to undergo ring‐opening processes to yield new metal‐containing polymers.  相似文献   

4.
5.
Medium‐sized lactams are important structural motifs found in a variety of bioactive compounds and natural products but are challenging to prepare, especially in optically active form. A Michael addition/proton transfer/lactamization organocascade process is described that delivers medium‐sized lactams, including azepanones, benzazepinones, azocanones, and benzazocinones, in high enantiopurity through the intermediacy of chiral α,β‐unsaturated acylammonium salts. An unexpected indoline synthesis was also uncovered, and the benzazocinone skeleton was transformed into other complex heterocyclic derivatives, including spiroglutarimides, isoquinolinones, and δ‐lactones.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
The compound [RU332- -ampy)(μ3η12-PhC=CHPh)(CO)6(PPh3)2] (1) (ampy = 2-amino-6-methylpyridinate) has been prepared by reaction of [RU3(η-H)(μ32- ampy) (μ,η12-PhC=CHPh)(CO)7(PPh3)] with triphenylphosphine at room temperature. However, the reaction of [RU3(μ-H)(μ3, η2 -ampy)(CO)7(PPh3)2] with diphenylacetylene requires a higher temperature (110°C) and does not give complex 1 but the phenyl derivative [RU332-ampy)(μ,η 12 -PhC=CHPh)(μ,-PPh2)(Ph)(CO)5(PPh3)] (2). The thermolysis of complex 1 (110°C) also gives complex 2 quantitatively. Both 1 and 2 have been characterized by0 X-ray diffraction methods. Complex 1 is a catalyst precursor for the homogeneous hydrogenation of diphenylacetylene to a mixture of cis- and trans -stilbene under mild conditions (80°C, 1 atm. of H2), although progressive deactivation of the catalytic species is observed. The dihydride [RU3(μ-H)232-ampy)(μ,η12- PhC=CHPh)(CO)5(PPh3)2] (3), which has been characterized spectroscopically, is an intermediate in the catalytic hydrogenation reaction.  相似文献   

17.
A method for the synthesis of heterocylic systems related to 9,10-dihydroanthracene with two hetero-atoms at the 9,10-positions is described. It involves the nucleophilic substitution reaction of η6-o-dichlorobenzene-η5-cyclopentadienyliron hexafluorophosphate with two nucleophilic groups (OH, SH and/or NH2) located in the 1,2-positions of a benzene ring to give a cyclopentadienyliron complexed heterocycle. Upon pyrolytic sublimation of the complex, the free heterocyclic compound is then obtained.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号