首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When components of a metal–organic framework (MOF) and a crystal growth modulator diffuse through a gel medium, they can form arrays of regularly‐spaced precipitation bands containing MOF crystals of different morphologies. With time, slow variations in the local concentrations of the growth modulator cause the crystals to change their shapes, ultimately resulting in unusual concave microcrystallites not available via solution‐based methods. The reaction–diffusion and periodic precipitation phenomena 1) extend to various types of MOFs and also MOPs (metal–organic polyhedra), and 2) can be multiplexed to realize within one gel multiple growth conditions, in effect leading to various crystalline phases or polycrystalline formations.  相似文献   

2.
3.
The protected tripeptides benzyl N‐{2‐[N‐(tert‐butoxy­carbon­yl)­prol­yl]‐4‐hydroxy­prol­yl}glycinate or Boc–Pro–Hyp–Gly–OBzl, C24H33N3O7, and benzyl N‐{2‐[N‐(tert‐butoxy­carbon­yl)­alan­yl]‐4‐hydroxy­prol­yl}glycinate or Boc–Ala–Hyp–Gly–OBzl, C22H31N3O7, are the minimum repeating triplets found in collagen. Within the crystal structure of each are two independent peptide mol­ecules with similar structures. The peptides are arranged anti­parallel to one another and inter­act through hydrogen bonds involving the main chains and the 4‐hydroxy­prolyl groups. The structures exhibit characteristics of a triple helix, but the peptides tend to assume a sheet‐like structure.  相似文献   

4.
Cobalt–silicon mixed oxide materials (Co/Si=0.111, 0.250 and 0.428) were synthesised starting from Co(NO3)2·6H2O and Si(OC2H5)4 using a modified sol–gel method. Structural, textural and surface chemical properties were investigated by thermogravimetric/differential thermal analyses (TG/DTA), XRD, UV–vis, FT-IR spectroscopy and N2 adsorption at −196 °C. The nature of cobalt species and their interactions with the siloxane matrix were strongly depending on both the cobalt loading and the heat treatment. All dried gels were amorphous and contained Co2+ ions forming both tetrahedral and octahedral complexes with the siloxane matrix. After treatment at 400 °C, the sample with lowest Co content appeared amorphous and contained only Co2+ tetrahedral complexes, while at higher cobalt loading Co3O4 was present as the only crystalline phase, besides Co2+ ions strongly interacting with siloxane matrix. At 850 °C, in all samples crystalline Co2SiO4 was formed and was the only crystallising phase for the nanocomposite with the lowest cobalt content. All materials retained high surface areas also after treatments at 600 °C and exhibited surface Lewis acidity, due to cationic sites. The presence of cobalt affected the textural properties of the siloxane matrix decreasing microporosity and increasing mesoporosity.  相似文献   

5.
SiO2–Ag wires were synthesized by a sol–gel technique. A two step approach was followed, focusing mainly on the effect of acid concentration on the first stage and processing temperature on the second. This acid-catalyzed reaction on the first stage yielded SiO2–AgCl wires with diameters as low as 800 nm average, and lengths ranging up to 100 μm, as determined by LV-SEM and TEM. A thermal treatment at different temperatures on the second step, under H2 atmosphere, yields silica–silver unidirectional structures. The chemical composition of these structures was determined by EDS, indicating the presence of Si, O and Ag. The transformation of the wires as a function of temperature under reducing atmosphere was followed by electron microscopy analysis. At 400 °C and above the silica starts to cover the reduced silver while maintaining the unidirectional conformation, suggesting a tendency to form silver wires covered by a silica layer.  相似文献   

6.
Co, Fe, Ni and Cu complexes of MgO‐supported polysilazane were prepared and found to be able to catalyze the aerobic epoxidation of long‐chain olefins to give corresponding epoxy‐alkanes in the presence of an aldehyde (as reductant) under mild conditions. When the Co complex catalyst was used for the aerobic oxidation of 1‐octene to give 1,2‐epoxy‐hexane, the yield and selectivity could achieve 92% and 100% respectively at 70 °C and under 1‐atm of O2. The catalyst was very stable, and could be reused several times without any appreciable change in catalytic activity. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
In this study, solvent sorption was used to investigate the morphology of a styrene–butadiene–styrene (SBS) triblock copolymer. The sorption process was found to deviate from the normal Fickian character, usually found in conventional elastomer–solvent systems, because of the presence of an interfacial region for both polybutadiene and polystyrene. This interphase absorbed solvent at a temperature below its glass transition and contributed to the resulting non-Fickian time-dependent diffusion process. The equilibrium diffusion coefficient was estimated to be 3.2 × 10?7 cm2/sec regardless of the casting surface. Nevertheless, according to the sorption measurements, the casting surface did have an effect on the approach to equilibrium. The results indicated a denser packing of the molecules and hence a decreased diffusion coefficient for Teflon and glass cast films, because of internal stresses left within the films during casting.  相似文献   

8.
The NCX‐NCI‐HMY (X=H, Cl, Br, I, Li; M=Be, Mg; Y=H, Li, Na) trimers are investigated to find ways to enhance the iodine–hydride interaction. The interaction energy in the NCI–HMH dimer is ?2.87 and ?5.87 kcal mol?1 for M=Be and Mg, respectively. When the free H atom in the NCI–HMH dimer is replaced with an alkali atom, the interaction energy is enhanced greatly. When NCX is added into this dimer, the interaction energy of the iodine–hydride interaction is increased by 9–45 % and its increased percentage follows the order X=Cl<Br<H<I<Li and M=Be<Mg. The combination of the alkali substitution and the cooperativity results in a more prominent enhancing effect. The largest interaction energy is found for the NCLi–NCI–HMgLi trimer (?7.03 kcal mol?1). The influence of the I???H interaction on the X???N interaction is also studied in the trimers. Both types of interactions are analyzed with NBO, AIM, and MEP. The interaction energy in the trimer is also unveiled by a many‐body analysis.  相似文献   

9.
Fe–Sn–O mixed oxides were synthesized and used as catalysts for Baeyer–Villiger oxidation of cyclohexanone, which showed both high catalytic activity and selectivity. X‐ray powder diffraction and scanning electron microscopy suggested that the Fe–Sn–O catalysts had a tetragonal structure with a grain size of 29.3 nm. An ε‐caprolactone yield as high as 98.8% was obtained in a small‐scale experiment (5 mmol of cyclohexanone). In a scale‐up test (20 mmol of cyclohexanone), the cyclohexanone conversion and ε‐caprolactone yield were 96.7 and 96.5%, respectively. In addition, the catalysts can be reused five times without any major decline in catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
While addition of [Cp2ReH] to [Bi(OtBu)3] leads to an equilibrium containing [Cp2Re‐Bi(OtBu)2], [{Cp2Re}2Bi(OtBu)], tBuOH and [CpRe(μη5,η1‐C5H4)Bi–ReCp2], in the presence of water [{(Cp2Re)2Bi}2O] ( 1 ) is formed selectively. Also [FpH] [Fp = (η5‐C5H5)(CO)2Fe] can be employed as a precursor to form heterometallic bismuth compounds. Synthesis of [FpBi{OCH(CF3)2}2]2 ( 5 ) can be achieved by reaction of [FpH] with [Bi{OCH(CF3)2}3(thf)]2 and carboxylates [FpBi(O2CR)2]2 are generated upon treatment of [FpH] with [Bi(O2CR)3] (R = CH3, tBu). While the compounds [Fp‐Bi(O2CR)2]2 can also be obtained from reactions with Fp‐Fp, they are formed far more readily using [FpH] as the precursor. They typically crystallize as dimers, like the alkoxide 5 . A monomeric compound of the type [Fp‐BiX2] ( 6 ) could be isolated for X = thd (tetramethylheptanedionate), that is, after the reaction of [FpH] with [Bi(thd)3]. Altogether, the results demonstrate the potential of [FpH] as a precursor for [Fp‐BiX2] compounds, which are formed in reactions with bismuth alkoxides, carboxylates and diketonates.  相似文献   

11.
12.
13.
14.
Telaprevir is a potent, selective, peptidomimetic inhibitor of the hepatitis C virus (HCV) NS3‐4A serine protease. it is used for the treatment of HCV infection in combination with peginterferon alfa and ribavirin. In the present work, the E–Z isomerization process of telaprevir in solution was revealed by online HPLC–DAD (diode array detector)–MS, variable‐temperature and variable‐gradient experiments. The molecular geometry information of the two isomers was established by molecular mechanics calculations, and good correlation between the two isomers' UV–vis spectra and their molecular geometry information was also discovered. In addition, it was revealed by molecular docking that the two isomers have different affinities to HCV NS3?4A protease, and the Z isomer, the minor form of telaprevir in solution, is the more effective inhibitor of HCV NS3?4A protease. The investigation can provide more structure information about telaprevir in solution and in the binding process of HCV NS3?4A protease.  相似文献   

15.
The reactivity of Pd–PEPPSI (Pyridine, Enhanced, Precatalyst, Preparation, Stabilization, and Initiation) precatalysts in the Stille–Migita cross‐coupling reaction between heteroaryl stannanes and aryl or heteroaryl halides was evaluated. In general, Pd–PEPPSI–IPent (IPent=diisopentylphenylimidazolium derivative) demonstrated high efficiency over a variety of challenging aryl or heteroaryl halides with thiophene‐, furan‐, pyrrole‐, and thiazole‐based organostannanes when compared with Pd–PEPPSI–IPr (IPr=diisopropylphenylimidazolium derivative). The transformations proceeded at appreciably lower temperatures (30–80 °C) than triarylphosphine‐based Pd catalysts, improving the scope of this useful carbon–carbon bond‐forming process.  相似文献   

16.
17.
In the structure of bis({N‐[di­methyl(1η5‐2,3,4,6‐tetra­methyl­in­den­yl)­silyl]­cyclo­hexyl­amido‐1κN}(methyl‐3κC)‐di‐μ3‐methyl­ene‐1:2:3κ3C;1:3:3′κ3C‐tris(pentafluorophenyl‐2κC)titanium) benzene disolvate, [Me2Si(η5‐2,3,4,6‐Me4C9H2)(C6H11N)]Ti[(μ3‐CH2)Al(C6F5)3][AlMe(μ3‐CH2)]2 or [Ti2(C21H7AlF15)2(C21H31NSi)2]·2C6D6, the dimer is located on an inversion center, and the two Ti centers are linked by double Ti(μ3‐CH2)Al(C6F5)3AlMe(μ3‐CH2) heterocycles. The electron‐deficient Ti centers are further stabilized by two α‐agostic interactions between Ti and one H atom of each bridging methyl­ene group.  相似文献   

18.
19.
20.
A new chiral polymer–metal complex, methylsulfo–sodium carboxymethyl–cellulose–Pt complex (MS‐NaCMC‐Pt), has been prepared by the reaction of sodium carboxymethylcellulose with methylsulfonyl chloride and H2PtCl6·6H2, which was found to be able to catalyze the asymmetric hydrogenation of salicyl alcohol to give (1S,2S)‐2‐(hydroxymethyl)‐cyclohexanol at 28 °C and under 1 atm H2, in > 90% product and optical yields, respectively. The catalyst could be reused many times without any remarkable changes in optical catalytic activity. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号