首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The 5,6:5′,6′-diepoxy-5,6:5′,6;-tetrahydro-β,β-carotene, isolated from tubers of a white-fleshed variety of sweet potato (Ipomoea batatas LAM .) has been assigned the (5R,6S,5′R,6′S)-chirality on the basis of its HPLC, UV/VIS, and CD data.  相似文献   

2.
Synthesis and Chirality of (5R, 6R)-5,6-Dihydro-β, ψ-carotene-5,6-diol, (5R, 6R, 6′R)-5,6-Dihydro-β, ε-carotene-5,6-diol, (5S, 6R)-5,6-Epoxy-5,6-dihydro-β,ψ-carotene and (5S, 6R, 6′R)-5,6-Epoxy-5,6-dihydro-β,ε-carotene Wittig-condensation of optically active azafrinal ( 1 ) with the phosphoranes 3 and 6 derived from all-(E)-ψ-ionol ( 2 ) and (+)-(R)-α-ionol ( 5 ) leads to the crystalline and optically active carotenoid diols 4 and 7 , respectively. The latter behave much more like carotene hydrocarbons despite the presence of two hydroxylfunctions. Conversion to the optically active epoxides 8 and 9 , respectively, is smoothly achieved by reaction with the sulfurane reagent of Martin [3]. These syntheses establish the absolute configurations of the title compounds since that of azafrin is known [2].  相似文献   

3.
The results of allowing tetrahydro-as-triazine-3(2H)-thiones to react with various α,β-diiunctional compounds, such as, α-bromoethyl p-toluenesulfonate, chloroacetaldehyde, α-bromophenylacet-uldehyde, phenaeyl bromide, chloroacetonitrile, α-bromophenylaeelonitrile, and α-cyanobenzyl p-toluenesulfonate are discussed. These condensations give either a 5H-thiazolo[3,2-b]-as-triazine or a 2H-thiazolo[2,3-c]-as-triazine.  相似文献   

4.
5-Amino-lH-1,2,4-triazolylcarbothiohydrazides gave β and γ-oxo-esters in boiling ethanol [1,2,4]triazolo- [1,5-d][1,2,4,6]tetrazepine-5-thiones 3 . Analogously ethyl 2-oxocyclohexanecarboxylate provided a mixture of two diastereomeric spiro derivatives 5 and 6 . At 130°, 2-acetonyl-5-methyl-4,5-dihydro-1,3,4-oxadiazole-5-thione ( 8 ) was formed. Ring closure of 3e (R1 = CH3, R2 = CH2CH2COOEt, Q = morpholino) lead to the isomeric pyrrolo[2,1-g][1,2,4]triazolo[1,5-d][1,2,4,6]tetrazepin-8(11H)-one ( 12 ) and pyrrolo[1,2-f][1,2,4]triazolo-[1,5-d][1,2,4,6]tetrazepin-10(7H)-one ( 13 ) derivatives representing two new ring systems.  相似文献   

5.
Biotransformation of (±)‐threo‐7,8‐dihydroxy(7,8‐2H2)tetradecanoic acids (threo‐(7,8‐2H2)‐ 3 ) in Saccharomyces cerevisiae afforded 5,6‐dihydroxy(5,6‐2H2)dodecanoic acids (threo‐(5,6‐2H2)‐ 4 ), which were converted to (5S,6S)‐6‐hydroxy(5,6‐2H2)dodecano‐5‐lactone ((5S,6S)‐(5,6‐2H2)‐ 7 ) with 80% e.e. and (5S,6S)‐5‐hydroxy(5,6‐2H2)dodecano‐6‐lactone ((5S,6S)‐5,6‐2H2)‐ 8 ). Further β‐oxidation of threo‐(5,6‐2H2)‐ 4 yielded 3,4‐dihydroxy(3,4‐2H2)decanoic acids (threo‐(3,4‐2H2)‐ 5 ), which were converted to (3R,4R)‐3‐hydroxy(3,4‐2H2)decano‐4‐lactone ((3R,4R)‐ 9 ) with 44% e.e. and converted to 2H‐labeled decano‐4‐lactones ((4R)‐(3‐2H1)‐ and (4R)‐(2,3‐2H2)‐ 6 ) with 96% e.e. These results were confirmed by experiments in which (±)‐threo‐3,4‐dihydroxy(3,4‐2H2)decanoic acids (threo‐(3,4‐2H2)‐ 5 ) were incubated with yeast. From incubations of methyl (5S,6S)‐ and (5R,6R)‐5,6‐dihydroxy(5,6‐2H2)dodecanoates ((5S,6S)‐ and (5R,6R)‐(5,6‐2H2)‐ 4a ), the (5S,6S)‐enantiomer was identified as the precursor of (4R)‐(3‐2H1)‐ and (2,3‐2H2)‐ 6 ). Therefore, (4R)‐ 6 is synthesized from (3S,4S)‐ 5 by an oxidation/keto acid reduction pathway involving hydrogen transfer from C(4) to C(2). In an analogous experiment, methyl (9S,10S)‐9,10‐dihydroxyoctadecanoate ((9S,10S)‐ 10a ) was metabolized to (3S,4S)‐3,4‐dihydroxydodecanoic acid ((3S,4S)‐ 15 ) and converted to (4R)‐dodecano‐4‐lactone ((4R)‐ 18 ).  相似文献   

6.
A by-product of the reaction of 3β-tosyloxy-5α-cholestane-5,6β-diol with , 3β-methyl-A-nor-5β-cholestan-5-ol-6-one, is believed to arise from the intramolecular ene reaction of 4,5-seco-cholest-3-en-6β-ol-5-one.  相似文献   

7.
Synthesis and Chirality of (5S,6R)-5,6-Epoxy-5,6-dihydro-β,β-carotene and (5R,6R)-5,6-Dihydro-β,β-carotene-5,6-diol, a Compound with Unexpected Solubility Characteristics Wittig-condensation of azafrinal ( 1e ) with the phosphorane derived from 7 leads to a (1:3)-mixture of (E)-9′- and (Z)-9′-β,β-carotene-diol 3 , from which pure and optically active 3 ((5R,6R)-5,6-dihydro-β,β-carotene-5,6-diol) has been isolated as bright violet leaflets, m.p. 168°. Due to the trans-configuration of the diol moiety and to severe steric hindrance, hydrogen bonding is reduced to such an extent, that 3 behaves much more as a hydrocarbon than as a diol. There is good evidence that the so-called ‘β-oxycarotin’ obtained by Kuhn & Brockmann [15] by chromic acid oxidation of β, β-carotene is the corresponding racemic cis-diol. 3 has been converted into (5S, 6R)-5,6-epoxy-5.6-dihydro-β,β-carotene ( 4 ), m.p. 156°. This transformation establishes for the first time the chirality of a caroteneepoxide (without other O-functions). Full spectral and chiroptical data including a complete assignement of 13C-chemical shifts for azafrin methyl ester and 3 are presented.  相似文献   

8.
3-[1′(1′H)-Substituent-pyrazol-5′-yl]benzo[5,6]coumarins and 3-(1′,2′-oxazol-5′-yl)benzo[5,6]coumarin were prepared via condensation of 3-(2′-formyl-1′-chlorovinyl)benzo[5,6] coumarin with hydrazine derivatives or hydroxylamine.Reaction of 3-[1′(1′H)-pyrazol-5′-yl]benzo[5,6]coumarin with alkyl halides,olefinic compunds or acid chlorides are described.  相似文献   

9.
β-Cryptoxanthin ( 1 ) was acetylated and then epoxidized with monoperoxyphthalic acid. After hydrolysis, repeated chromatography, and crystallization, (3S,5R,6S)-5,6-epoxy-β-cryptoxanthin ( 3 ), (3S,5S,6R)-5,6-epoxy-β-cryptoxanthin ( 4 ), (3R,5′R,6′R)-5′,6′-epoxy-β-cryptoxanthin ( 5 ), (3S,5R,6S,5′R,6′S)-5,6:5′,6′-diepoxy-β-cryp-toxanthin ( 6 ), and (3S,5S,6R,5′S,6′R)-5,6:5′,6′-diepoxy-β-cryptoxanthin ( 7 ) were isolated as main products and characterized by their UV/VIS, CD, 1H- and 13C-NMR, and mass spectra. The comparison of the carotenoid isolated from yellow, tomato-shaped paprika (Capsicum annuum var. lycopersiciforme flavum) with 3–5 strongly supports the structure of 3 for the natural product.  相似文献   

10.
The cycloaddition reaction of cyclic imidates, 2‐benzyl‐5,6‐dihydro‐4H‐1,3‐oxazines 1a , 1b , 1c , 1d , 1e , 1f , with dimethyl acetylenedicarboxylate 2 , trimethyl ethylenetricarboxylate 4 , or dimethyl 2‐(methoxymethylene)malonate 6 afforded new fused heterocyclic compounds, such as methyl (6‐oxo‐3,4‐dihydro‐2H‐pyrrolo[2,1‐b]‐1,3‐oxazin‐7‐ylidene)acetates 3a , 3b , 3c , 3d , 3e , 3f (71–79%), dimethyl 2‐(6‐oxo‐3,4,6,7‐tetrahydro‐2H‐pyrrolo[2,1‐b]‐1,3‐oxazin‐7‐yl)malonates 5b , 5c , 5d , 5e , 5f (43–71%), or methyl 6‐oxo‐3,4‐dihydro‐2H,6H‐pyrido[2,1‐b]‐1,3‐oxazine‐7‐carboxylates 7a , 7b , 7c , 7d , 7e , 7f (32–59%), respectively. In these reactions, 1a , 1b , 1c , 1d , 1e , 1f (cyclic imidates, iminoethers) functioned as their N,C‐tautomers (enaminoethers) 2 to α,β‐unsaturated esters 2 , 4, and 6 to give annulation products 3 , 5 , and 7 following to the elimination of methanol, respectively. J. Heterocyclic Chem., (2011).  相似文献   

11.
β‐Lapachone     
The most remarkable aspect of the crystal structure of the title compound (systematic name: 3,4‐dihydro‐2,2‐dimethyl‐2H‐naphtho[1,2‐b]pyran‐5,6‐dione), C15H14O3, is that a π‐stacking inter­action is present between the two naphthalene ring systems of symmetry‐related mol­ecules. Apart from these π–π inter­actions, different mol­ecules are held together by weak C—H⋯O hydrogen‐bonding inter­actions.  相似文献   

12.
The Photoinduced Cleavage of Conjugated γ, δ-Epoxyenones: UV.-Irradiation of 5,6-Epoxy-3, 4-didehydro-5,6-dihydro-β-ionone On 1n, π*-excitation (λ ≥ 347 nm) in pentane or CClF2CFCl2 (E)- 1 is isomerized to the dihydrofurane (E/Z)- 2 as well to the ethers 3 and 5. Besides these products the isomeric cyclopropane derivative (E)- 4 and the acetal 6 are obtained in methanol. The detection of 6 indicates the formation of an intermediate ketoniumylide a which may give 6 by addition of methanol. ? On 1π, π*-excitation (λ=254 nm) in acetonitrile-d3, CClF2CFCl2 or pentane (E)- 1 yields almost exclusively (E)- 2. In methanol 6 is obtained in addition to (E/Z)- 2 , but no (E)- 4 and 5 is formed.  相似文献   

13.
Oxidations of 5α‐hydroxy‐B‐norcholestan‐3β‐yl acetate ( 8 ) with Pb(OAc)4 under thermal or photolytic conditions or in the presence of iodine afforded only complex mixtures of compounds. However, the HgO/I2 version of the hypoiodite reaction gave as the primary products the stereoisomeric (Z)‐ and (E)‐1(10)‐unsaturated 5,10‐seco B‐nor‐derivatives 10 and 11 , and the stereoisomeric (5R,10R)‐ and (5S,10S)‐acetals 14 and 15 (Scheme 4). Further reaction of these compounds under conditions of their formation afforded, in addition, the A‐nor 1,5‐cyclization products 13 and 16 (from 10 ) and 12 (from 11 ) (see also Scheme 6) and the 6‐iodo‐5,6‐secolactones 17 and 19 (from 14 and 15 , resp.) and 4‐iodo‐4,5‐secolactone 18 (from 15 ) (see also Scheme 7). Oxidations of 5β‐hydroxy‐B‐norcholestan‐3β‐yl acetate ( 9 ) with both hypoiodite‐forming reagents (Pb(OAc)4/I2 and HgO/I2) proceeded similarly to the HgO/I2 reaction of the corresponding 5α‐hydroxy analogue 8 . Photolytic Pb(OAc)4 oxidation of 9 afforded, in addition to the (Z)‐ and (E)‐5,10‐seco 1(10)‐unsaturated ketones 10 and 11 , their isomeric 5,10‐seco 10(19)‐unsaturated ketone 22 , the acetal 5‐acetate 21 , and 5β,19‐epoxy derivative 23 (Scheme 9). Exceptionally, in the thermal Pb(OAc)4 oxidation of 9 , the 5,10‐seco ketones 10, 11 , and 22 were not formed, the only reaction being the stereoselective formation of the 5,10‐ethers with the β‐oriented epoxy bridge, i.e. the (10R)‐enol ether 20 and (5S,10R)‐acetal 5‐acetate 21 (Scheme 8). Possible mechanistic interpretations of the above transformations are discussed.  相似文献   

14.
3‐(ω′‐Alkenyl)‐substituted 5,6‐dihydro‐1H‐pyridin‐2‐ones 2 – 4 were prepared as photocycloaddition precursors either by cross‐coupling from 3‐iodo‐5,6‐dihydro‐1H‐pyridin‐2‐one ( 8 ) or—more favorably—from the corresponding α‐(ω′‐alkenyl)‐substituted δ‐valerolactams 9 – 11 by a selenylation/elimination sequence (56–62 % overall yield). 3‐(ω′‐Alkenyloxy)‐substituted 5,6‐dihydro‐1H‐pyridin‐2‐ones 5 and 6 were accessible in 43 and 37 % overall yield from 3‐diazopiperidin‐2‐one ( 15 ) by an α,α‐chloroselenylation reaction at the 3‐position followed by nucleophilic displacement of a chloride ion with an ω‐alkenolate and oxidative elimination of selenoxide. Upon irradiation at λ=254 nm, the precursor compounds underwent a clean intramolecular [2+2] photocycloaddition reaction. Substrates 2 and 5 , tethered by a two‐atom chain, exclusively delivered the respective crossed products 19 and 20 , and substrates 3 , 5 , and 6 , tethered by longer chains, gave the straight products 21 – 23 . The completely regio‐ and diastereoselective photocycloaddition reactions proceeded in 63–83 % yield. Irradiation in the presence of the chiral templates (?)‐ 1 and (+)‐ 31 at ?75 °C in toluene rendered the reactions enantioselective with selectivities varying between 40 and 85 % ee. Truncated template rac‐ 31 was prepared as a noranalogue of the well‐established template 1 in eight steps and 56 % yield from the Kemp triacid ( 24 ). Subsequent resolution delivered the enantiomerically pure templates (?)‐ 31 and (+)‐ 31 . The outcome of the reactions is compared to the results achieved with 4‐substituted 5,6‐dihydro‐1H‐pyridin‐2‐ones and quinolones.  相似文献   

15.
Photochemistry of Conjugated δ-Keto-enones and β,γ,δ,?-Unsaturated Ketones On 1π,π*-excitation the δ-keto-enones 5–8 are isomerized to compounds B ( 18 , 22 , 26 , 28 ) via 1,3-acyl shift and to compounds C ( 19 , 23 , 27 , 29 ) via 1,2-acyl shift, whereas the β,γ,δ,?-unsaturated ketone 9 gives the isomers 32 and 33 by 1,2-and 1,5-acyl shift, respectively. Furthermore, isomerization of 6 to 24 , dimerization of 8 to 30 and addition of methanol to 8 ( 8 → 31 ) is observed. Unlike 7 and 8 the acyclic ketones 5 , 6 and 9 undergo photodecarbonylation on 1π,π*-excitation ( 5 → 20 , 21 ; 6 → 20 , 25 ; (E)- 9 → 35–38 ). Evidence is given, that the conversion to B as well as the photodecarbonylation of 5,6 and 9 arise from an excited singulet state, but the conversion to C as well as the dimerization of 8 from the T1-state.  相似文献   

16.
Various 2H‐5,6‐dihydroselenine derivatives were synthesized by the reaction of α‐alkoxy carbonylselenoacetamides with α,β‐unsaturated ketones in the presence of BF3•Et2O.  相似文献   

17.
The synthesis of new pyrido[3′,2′:5,6]thiopyrano[3,2‐b]indol‐5(6H)‐ones was accomplished by the Fischer‐indole cyclization of some 2,3‐dihydro‐3‐phenylhydrazonothiopyrano[2,3‐b]pyridin‐4(4H)‐ones, obtained from the 2,3‐dihydro‐3‐hydroxymethylenethiopyrano[2,3‐b]pyridin‐4(4H)‐one, by the Japp‐Klingemann reaction. 6H‐Pyrido[3′,2′:5,6]thiopyrano[4,3‐b]quinolines were obtained by reaction of 2,3‐dihydrothiopyrano‐[2,3‐b]pyridin‐4(4H)‐ones with o‐aminobenzaldehyde or 5‐substituted isatins. The preparation of some derivatives, functionalized with an alkylamino‐substituted side chain, is also described.  相似文献   

18.
Detailed protonation experiments of the [5,6]‐pinenebipyridine molecule and the unsubstituted [4,5]‐ and [5,6]‐CHIRAGEN[0] ligands in various solvents indicate a variety of structures of the protonated species. UV‐visible and NMR measurements (including 15N chemical shifts) show the transition from trans to cis conformation of [5,6]‐pinenebipyridine upon protonation. The [4,5]‐CHIRAGEN[0] ligand, in which the protonation sites of the nitrogen atom donors are at opposite sides of the molecule, behave essentially like two independent bipyridine moieties; this behaviour was monitored by UV‐visible, CD and NMR spectroscopy (including 15N data). In the case of the [5,6]‐CHIRAGEN[0], a pocket of donor atoms provides a chiral environment for two protons per ligand.  相似文献   

19.
On treatment with acid, trans-5,6-dihydroxy-5,6-dihydro-β-ionone 2 undergoes a clean rearrangement to give a mixture of the furylketone 5 and the aliphatic triketone 6 in good yield.  相似文献   

20.
The reactions of the heterocyclic imines 5,6‐dihydro‐2H‐[1,3]oxazines and 2H‐1,4‐benzothiazines with different substituted acetyl chlorides in the presence of triethylamine forming β‐lactams were examined focusing on the stereochemistry of the Staudinger reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号