首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Structure and Properties of TlZnPO4 and TlZnAsO4 TlZnPO4 and TlZnAsO4 have polymorphic behavior with two phase transitions (TlZnPO4: 263°C, 450°C; TlZnAsO4: 562°C, 752°C) between room temperature and the congruent melting point at 1 090°C for TlZnPO4 and 930°C for TlZnAsO4. X-ray diffraction powder patterns have shown, that the compounds are isotypic and crystallize in the monoclinic system with the lattice constants a = 882.8(2), b = 546.2(1), c = 872.9(1) pm, β = 90.61(2)° for TlZnPO4, a = 895.4(1), b = 562.3(1), c = 892.8(1) pm, β = 91.08(2)° for TlZnAsO4, Z = 4, space group P21. TlZnPO4 and TlZnAsO4 belong to the „stuffed derivatives”︁ of the Icmm structure type with a [ZnXO4] network of corner linked alternating ZnO4 and XO4 tetrahedra (X = P, As) with channels of six-membered rings in the direction of the c axis. These cavities contain the Tl cations. The results of 31P MAS-NMR measurement of TlZnPO4 may be correlated with its structure. The Tl+ ionic conductivity at 300°C reaches only values of 4.4 × 10−8 Ω−1 cm−1 for TlZnPO4 and 4.5 × 10−8 Ω−1 cm−1 for TlZnAsO4.  相似文献   

2.
Cu3SbS3: Crystal Structure and Polymorphism The hitherto unknown crystal structure of β-Cu3SbS3 at room temperature could be determined from a twinned crystal. The compound crystallizes in the monoclinic system, space group P21/c (No. 14), with a = 7.808(1), b = 10.233(2) and c = 13.268(2) Å, β = 90.31(1)°, V = 1 060.1(2) Å3, Z = 8. An Extended-Hückel-Calculation shows weak bonding interactions between copper atoms which are coordinated trigonal planar. At ?9°C a first order phase transition occurs and the crystals disintegrate. The low-temperature modification (γ) crystallizes in the orthorhombic system with a = 7.884(2), b = 10.219(2) and c = 6.623(2) Å, V = 533.6(2) Å3 (?100°C). At 121°C a phase transition of higher order is observed. The high-temperature polymorph (α) of Cu3SbS3 is orthorhombic again. From high-temperature precession photographs the space groups Pnma (No. 62) or Pna21 (No. 33) can be derived. The lattice constants at 200°C are a = 7.828(3), b = 10.276(4) and c = 6.604(3) Å, V = 531.2(2) Å3.  相似文献   

3.
Synthesis and Crystal Structures of the Phosphoraneiminato Complexes [SbF2(NPEt3)]2 and [SbF(NPEt3)2]2 as well as of NMe4+SbF4? The title compounds have been prepared from antimony trifluoride with the silylated phosphaneimine Me3SiNPEt3 and [NMe4]F, respectively. They were characterized by IR spectroscopy and by crystal structure determinations. [SbF2(NPEt3)]2 : Space group Pbca, Z = 8, structure determination with 1264 unique reflections, R1 = 0.028 for reflections with I > 2σ(I). Lattice dimensions at ?80°C: a = 1284.8, b = 1162.4, c = 1380.4 pm. The compound forms centrosymmetric dimeric molecules, in which the Ψ-trigonal-bipyramidal coordinated antimony atoms are linked via μ2-N bridges of the NPEt3? ligands. [SbF(NPEt3)2]2 : Space group P21/c, Z = 4, structure determination with 2270 unique reflections, R1 = 0.029 for reflections with I > 2μ(I). Lattice dimensions at ?75°C: a = 815.8, b = 1121.2, c = 2068.5 pm, β = 101.09°. The compound forms centrosymmetric dimeric molecules, in which the Ψ-trigonal-bipyramidal coordinated antimony atoms are linked via μ2-N bridges of one of the two NPEt3? ligands. The other NPEt3? group is terminally connected. NMe4+SbF4? : Space group P21/c, Z = 4, structure determination with 1503 unique reflections, R1 = 0.069 for reflections with I > 2μ(I). Lattice dimensions at ?50°C: a = 539.80, b = 896.10, c = 1760.3 pm, β = 90.338°. The compound includes monomeric SbF4? ions with distorted Ψ-trigonal-bipyramidal environment of the antimony atoms.  相似文献   

4.
Preparation, Crystal Structures, Vibrational Spectra, and Normal Coordinate Analysis of Four Linkage Isomeric Tetrachlorodirhodanoosmates(IV) By treatment of cis- or trans-[OsCl4I2]2? with (SCN)2 in dichloromethane the linkage isomers cis-[OsCl4(NCS)2]2? ( 1 ), trans-[OsCl4(NCS)(SCN)]2? ( 2 ), cis-[OsCl4(NCS)(SCN)]2? ( 3 ) and trans-[OsCl4(SCN)2]2? ( 4 ) are formed which have been separated by ion exchange chromatography on diethylaminoethyl cellulose. The X-Ray structure determinations on single crystals of cis-(Ph4As)2[OsCl4(NCS)2] (triclinic, space group P1 , a = 10.019(5), b = 11.702(5), c = 21.922(5) Å, α = 83.602(5)°, β = 85.718(5)°, γ = 73.300(5)°, Z = 2), trans-(Ph4As)2[OsCl4 · (NCS)(SCN)] (monoclinic, space group P21/c, a = 18.025(5), b = 11.445(5), c = 23.437(5) Å, β = 94.208(5)°, Z = 4), cis-(Ph4As)2[OsCl4(NCS)(SCN)] (triclinic, space group P1 , a = 10.579(5), b = 11.682(5), c = 22.557(5) Å, α = 81.073(5)°, β = 85.807(5)°, γ = 87.677(5)°, Z = 2) and trans-(Ph4As)2 · [OsCl4(SCN)2] (triclinic, space group P1 , a = 10.615(5), b = 11.691(5), c = 11.907(5) Å, α = 111.314(5)°, β = 96.718(5)°, γ = 91.446(5)°, Z = 1) reveal the complete ordering of the complex anions. The via N or S coordinated thiocyanate groups are located nearly direct above one of the cis-positioned Cl ligands with Os? N? C angles of 171.2° and 174.3° ( 1 ), 162.3° ( 2 ), 172° ( 3 ) and Os? S? C angles of 108.3° ( 2 ), 105.7° ( 3 ) and 105.5° ( 4 ). Using the molecular parameters of the X-Ray determinations the low temperature (10 K) IR and Raman spectra of the (n-Bu4N) salts of all four linkage isomers are assigned by normal coordinate analyses based on a modified valence force field. The valence force constants are fd(OsN) = 1.59 ( 1 ), 1.67 ( 2 ), 1.60 ( 3 ) and fd(OsS) = 1.27 ( 2 ), 1.31 ( 3 ) and 1.32 mdyn Å?1 ( 4 ). Taking into account increments of the trans influence a good agreement between observed and calculated frequencies is achieved.  相似文献   

5.
Transparent yellow crystals of Ba4[WN4]Cl2 were grown at 850°C by the reaction of Ba(NH2)2 with W in a KCl melt under flowing nitrogen. The compound crystallizes monoclinic in P21/m and Z = 2 with the cell parameters a = 8.447(4) Å, b = 6.143(2) Å, c = 10.727(6) Å and β = 99.04(4)°. The crystal structure contains isolated anions [WN4]6? and Cl?. It is the first nitridotungstate(VI) chloride reported so far.  相似文献   

6.
Synthesis and Characterization of Tetralithiumpentaoxoselenate(VI) Pure Li4SeO5 was prepared by solid state reaction at 500 °C from a mixture of Li2O and Li2SeO4 in silver crucibles. The crystal structure was solved and refined with x‐ray powder methods (profile matching, C2/c, a = 873.3(1), b = 572.5(1), c = 783.6(1) pm, β = 98.29(1)°, Rp = 0.052, Rwp = 0.066). Li4SeO5 contains novel SeO54– anions, which form slightly distorted trigonal bipyramids. All ions are coordinated by 5 ligands in the shape of trigonal bipyramidal polyhedra, according to the formula Li4[5]Se[5]O5[5]. From the empirical formula and the coordinaton environments, it is clear that this is an order variant of the A[5]B[5] structure type, that was found in the system NaCl by global optimisation methods. The crystal structure is consistent with spectroscopic data (IR, Raman, NMR). The ionic conductivity (σ = 3.34 10–5 Ω–1 cm–1 at 340 °C) of the compound was determined with impedance measurements.  相似文献   

7.
The reaction of 4-amino-6-methyl-1,2,4-triazine-3(2 H)-thione-5-one (AMTTO) with silver(I) nitrate in methanol gives the complex [Ag(AMTTO)2]NO3 ( 1 ). 1 was characterized by IR and 13C NMR spectroscopy and by an X-ray structure analysis [space group C2/c, Z = 4, lattice dimensions at –80 °C: a = 1306.7(2), b = 1139.0(2), c = 1089.2(1) pm, β = 94.54(1)°, R1 = 0.0294]. The cation possesses a highly distorted linear coordination sphere in the solid state.  相似文献   

8.
The complexes [Cu(AMTTO)Cl2] ( 2 ), [Cu(AMTTO)2]Cl ( 3 ), and [Cu(AMTTO)(PPh3)2Cl] ( 4 ) have been prepared and characterized by IR spectroscopy and elemental analyses. Also single‐crystal X‐ray diffraction studies on compound 2 , 3 and 4 revealed that AMTTO acts in 2 as a bidentate ligand via nitrogen and sulfur atoms, in 3 and 4 as a monodentate via sulfur atoms. Complex 3 was already mentioned in literature, but the structure was not described in detail. The molecules in 2 form infinite chains through additional weak Cu—S interactions along [010] indicating the Jahn‐Teller distortion of the d9 ion Cu2+. The infinite chains are connected by hydrogen bonding along [100]. Crystal data for 2 at —80°C: monoclinic, space group P21/m, a = 666.7(1), b = 609.4(1), c = 1132.6(2) pm, b = 95.46(2)°, Z = 2, R1 = 0.0365; for 3 at —80°C: orthorhombic, space group Pbcn, a = 1291.2(2), b = 1146.5(1), c = 1000.5(1) pm, Z = 4, R1 = 0.0315; for 4 at —80°C: monoclinic, space group, P21/n, a = 879.4(1), b = 1849.3(2), c = 2293.8(3) pm, β = 92.38(1)°, Z = 4, R1 = 0.0688.  相似文献   

9.
The title compound crystallizes in space group P 21/c of the monoclinic system in a cell of dimensions: a = 9.231(2), b = 15.931(2), c = 12.420(2) Å, β = 108.37(1)°. The observed density is 1.60 g/cm3 and the density calculated for four molecules in the cell is 1.58 g/cm3. The refinement converged with R = 0.029 and Rw = 0.028 based on 2569 reflections with I > 2.5 σ. The molecule has approximate Cs symmetry with a mirror plane roughly containing the central Mo atom and two cis-carbonyls, C(1)O(1) and C(4)O(4), while bisecting the bidentate, H2CPz2, and two trans-carbonyls. The four carbonyls and tine bidentate adopt a quasi-octahedral arrangement around the Mo atom. The C(NN)2Mo linkage of the (H2CPz′2)Mo fragment is observed to be in the boat form. The two cis-carbonyls are bent away by the bulky H2CPz′2 bidentate giving ∠C(1)-Mo-C(4) ? 167.3(1)°. The distortion explains the facile allyl bromination and decarbonylation observed for the title compound.  相似文献   

10.
Li6Zr2O7 was obtained by annealing an intimate mixture of LiOH · H2O and freshly prepared ZrO2 in a stream of argon. It is monoclinic: C2/c, a = 1 044.5(1), b = 598.9(1), c = 1 020.0(1) pm, β = 100.26(1)°, Z = 4, R = 0.016 for 1 218 F values and 55 variables. The structure is closely related to that of NaCl with an ordered distribution of the metal atoms on the sodium sites while the oxygen atoms occupy seven eighths of the chlorine positions. Li has square pyramidal, Zr octahedral oxygen coordination. The corresponding Hf compound is isotypic: a = 1 040.2(1), b = 596,2(1), c = 1 015.0(1) pm, β = 100.36(1)°. 7Li nuclear magnetic resonance spectra of this compound give no indication for a high mobility of the Li+ ions.  相似文献   

11.
Bicyclic azulene compounds, ethyl 4-(cyanoethoxycarbonylmethyl)-2-methylazulene-1-carboxylate (2) and ethyl 4-(cyanoethoxycarbonylmethyl)azulene-1-carboxylate (3) were prepared from ethyl 4-chloro-2-methylazulene-1-carboxylate (7) and ethyl 4-ethoxyazulene-1-carboxylate (8), respectively. Oxidation of 2 with DDQ gave the title compound, 5-cyano-4-ethoxy-1-ethoxycarbonyl-2-methylazuleno[1,8-b,c]pyran (1) and a minor compound, ethyl 4-cyanomethyl-2-methylazulene-1-carboxylate (9). Oxidation of 3 by DDQ produced only ethyl 4-cyanomethylazulene-1-carboxylate (10), Reaction of 1 with 100% H3PO4 at room temperature and 100 °C gave 5-cyano-4-ethoxy-2-methylazuleno[1,8-b,c]pyran (11) and 2-methyl-4,5-dihydrozuleno[1,8-b,c]pyran-4-one (12), respectively. All the new compounds were characterized by IR, UV-vis, NMR and Mass spectra, and the structure of 1 was determined by X-ray crystallography. Crystal data for 1; space group P21/n, a = 7.391(1), b = 9.660(5), c = 22.859(1) Å, B = 97.01(1)°, V = 1620.0(3) Å3, Z = 4, with final residuals R = 0.047 and Rw = 0.055.  相似文献   

12.
Synthesis and Crystal Structures of the Samarium Complexes [SmI2(DME)3] and [Sm2I(NPPh3)5(DME)] When treated with ultrasound, the reaction of samarium metal with N-iodine-triphenylphosphaneimine in 1,2-dimethoxyethane (DME) leads to the two samarium complexes [SmI2(DME)3] ( 1 ) and [Sm2I(NPPh3)5(DME)] ( 2 ), which are separated from each other by fractional crystallization. 1 could be isolated in two different crystallographic forms, namely as brownish black crystals ( 1 a ) and as violet-black crystals ( 1 b ), both of them are characterized by crystal structure analyses. 1 a : Space group P21/c, Z = 4, lattice dimensions at –80 °C: a = 1459.4(1), b = 1314.4(1), c = 2293.6(2) pm, β = 99.245(8)°, R = 0.0344. The structure of 1 a holds two crystallographically independent molecules [SmI2(DME)3], in which the samarium atoms have coordination number eight. The two individuals differ from each other particularly in their I–Sm–I bond angles, which are 157.94 and 178.45°. 1 b : Space group P21, Z = 2, lattice dimensions at –80 °C: a = 849.4(3), b = 1060.1(3), c = 1235.1(6) pm, b = 93.86(5)°, R = 0.0251. 1 b has a molecular structure similar to that of 1a with a bond angle I–Sm–I of 158.40°. The phosphoraneiminato complex [Sm2I(NPPh3)5(DME)] ( 2 ) forms colourless, moisture sensitive crystals which contain two molecules DME per formula unit. 2 · 2 DME: Space group P1, Z = 2, lattice dimensions at –80 °C: a = 1405.0(4), b = 1656.5(3), c = 2208.3(7) pm, α = 89.60(3)°, β = 72.96(4)°, γ = 78.70(3)°, R = 0.0408. In 2 the two samarium atoms are linked via the μ-N atoms of two phosphoraneiminato ligands to form a planar Sm2N2 four-membered ring. One of the Sm atoms is terminally coordinated by the N atoms of two (NPPh3) groups, thus achieving a distorted tetrahedral surrounding. The second Sm atom is coordinated by the N atom of one (NPPh3) group, by the terminally bonded iodine atom, and by the O atoms of the DME chelate, thus achieving a distorted octahedral surrounding.  相似文献   

13.
The reaction of 4‐amino‐6‐methyl‐1,2,4‐triazin‐thione‐5‐one (H2AMTTO, 1 ) with 4‐chlorobenzaldhyde led to the corresponding iminic compound {(4‐[(4‐chloro‐benzylidene)‐amino]‐6‐methyl‐3‐thioxo[1,2,4]‐triazin‐3,4‐dihydro(2H)‐5‐one), CAMTTO ( 2 ). Treatment of 2 with copper(I) chloride in chloroform gave the dimeric complex [{(CAMTTO)2CuCl}2]·2CHCl3 ( 3 ). Treatment of 2 with copper(I) chloride and silver(I) nitrate in the presence of the co‐ligand triphenylphophane gave the complexes [(CAMTTO)CuCl(PPh3)2] ( 4 ) and [(CAMTTO)Ag(PPh3)2]NO3·2CHCl3 ( 5 ). All compounds have been characterized by elemental analyses, 1H NMR spectroscopy, IR spectroscopy, and partly by mass spectrometry and X‐ray diffraction studies. In addition 4 and 5 have been characterized by 31P{1H} NMR spectroscopy. Crystal data for 2 at ?80 °C: monoclinic, space group P21/c, a = 1370.3(1), b = 767.8(1), c = 1268.7(1) pm, β = 107.12(1)°, Z = 4, R1 = 0.0379; for 3 at ?80 °C: monoclinic, space group P21/c, a = 1442.6(2), b = 878.8(1), c = 2558.7(3) pm, β = 95.31(1)°, Z = 2, R1 = 0.0746; for 4 at ?80 °C: triclinic, space group , a = 1287.9(1), b = 1291.7(1), c = 1359.5(1) pm, α = 90.44(1)°, β = 94.81(1)°, γ = 107.54(1)°, Z = 2, R1 = 0.0359 and for 5 at ?80 °C: triclinic, space group , a = 1060.5(1), b = 1578.2(2), c = 1689.6(2) pm, α = 87.70(1)°, β = 86.66(1)°, γ = 76.84(1)°, Z = 2, R1 = 0.0487.  相似文献   

14.
Preparation, Crystal Structure and Normal Coordinate Analysis of Linkage Isomeric Pentachlororhodanoosmates(IV) By treatment of [OsCl5I]2? with (SCN)2 in dichloromethane the linkage isomers [OsCl5(NCS)]2? and [OsCl5(SCN)]2? are formed which have been separated by ion exchange chromatography on diethylaminoethyl cellulose. The X-ray structure determination on single crystals of (Ph4As)2[OsCl5(NCS)] (monoclinic, space group P21/a, a = 18.872(2), b = 11.6024(2), c = 22.786(1), β = 109.057(1)°, Z = 4) and (Ph4As)2[OsCl5(SCN)] (monoclinic, space group P21/a, a = 19.057(2), b = 11.306(2), c = 22.612(1), β = 106.64(2)°, Z = 4) reveals the complete ordering of the complex anions. The thiocyanate group is located above one of the Cl ligands of the equatorial plane with the Os? N? C angle of 166.1° for N bonding and the Os? S? C angle of 109.9° for S bonding. The IR and Raman spectra of both linkage isomers known from literature are assigned by normal coordinate analysis based on the general valence force field using the molecular parameters of the X-ray determination. The valence force constants are fd(OsN) = 1,81 and fd(OsS) = 1,32 mdyn/Å. Taking into account increments of the trans influence a good adjustment between observed and calculated frequencies is achieved.  相似文献   

15.
Preparation and Crystal Structure of Cs4SnO3 Crystals of Cs4SnO3 were synthesized by reaction of SnO with elemental Cs. The compound crystallizes with the triclinic spacegroup P1 with lattice constants a = 737.61(9) pm, b = 1171.3(1) pm, c = 1199.2(1) pm, α = 66.08(3)°, β = 80.88(2)°, γ = 82.28(3)° and Z = 4. The crystal structure exhibits isolated stannate(II) ions [SnIIO3]4– of ψ-tetrahedral form. Whereas a new structure type is present, there is a close relationship with the structures of the Cs stanntates and plumbates(IV).  相似文献   

16.
Syntheses and Crystal Structures of Y(HSO4)3-I and Y(HSO4)3 · H2O Lath shaped crystals of Y(HSO4)-I are obtained by treatment of Y2O3 with conc. sulfuric acid at 200 °C. Y(HSO4)3-I crystallizes orthorhombic (Pbca, Z = 8, a = 1201.5(1), b = 953.76(8), c = 1650.4(1) pm, Rall = 0.0388). In the crystal structure Y3+ is coordinated by eight monodentate HSO4 groups. Colorless, plate like single crystals of Y(HSO4)3 · H2O grew from a solution of Y2O3 in 85% sulfuric acid upon cooling. In the crystal structure of the triclinic compound (P1, Z = 2, a = 679.8(1), b = 802.8(2), c = 965.9(2) pm, α = 79.99(2)°, β = 77.32(2)°, γ = 77.50(2)°, Rall = 0.0264) Y3+ is surrounded by seven HSO4 groups and one molecule of water.  相似文献   

17.
Protonation and Methylation of 1, 1-Dicyanoethylene-2, 2-dithiolate Dianion. Preparative and Structural Investigations Protonation of alkaline metal salts of [S2C = C(CN)2]2? ( I ) in water yields a product of composition H2S2C4N2 ( II ). The species has to be formulated as dimere and crystallizes with two moles DMSO from DMSO solution with space group C2/c and a = 20.611(3), b = 4.800(1), c = 20.638(3) Å, β = 103.3(1)°, Z = 4. The X-ray structural analysis shows II to be a centrosymmetric 1, 3-Dithiacyclobutane system. On methylation of I with CH3I in the molar ratio 1:1, the monomethylated anion III can be isolated as AsPh4 salt. The compound crystallizes in the monoclinic space group P21/c, with a = 23.632(2), b = 14.304(1), c = 7.989(1) Å, β = 100.1(8)° and Z = 4. There are nearly planar anions [MeS(S)C?C(CN)2]? with an anti-conformation of the MeS group.  相似文献   

18.
The colorless Cs4ZrO4 is obtained from the reaction of stoichiometric proportions of Cs, CsO2, and finely divided ZrO2 in a sealed Ag container at 400–650°C for several days. Regrinding and re-reaction provide a single phase sample. The compound is monoclinic (P21/c, Z = 4, a = 7.172 (1) Å, b = 19.907 (1) Å, c = 7.157 (1) Å, β = 113.1 (1)Å, R = 0.032) and isostructural with Cs4PbO4, with isolated ZrO44? tetrahedra (d(Zr–O) = 1.97 Å). The compound decomposes to Cs2ZrO3 (a) in the presence of excess oxygen or CsO2, (b) in high vacuum near 275°C, or (c) in a sealed container at about 730 ± 10°C.  相似文献   

19.
The solvatochromic compound [Cu(tfmh)Me4en]ClO4 (tfmh? denotes the anion of 1,1,1-trifluoro-6-methyl-2,4-heptanedione) was prepared and its structure has been determined from three-dimensional X-ray diffraction data. The structure consists of discrete [Cu(tfmh)Me4en]+ monomeric units and perchlorate ions. The copper(II) ion is surrounded by the two nitrogen atoms of the diamine molecule and the two oxygen atoms of the β-dionato anion. The N,N,N′,N′-tetramethyl-1,2-diaminoethane, Me4en, coordinates as bidentate ligand through the nitrogen atoms and adopts the gauche conformation and λ configuration. The CuN2O2 chromophore is virtually planar. The compound crystallizes in the monoclinic system (space group P21/c) with a = 11.9520(2), b = 14.6600(2), c = 17.2240(4) Å, β = 135.72(2)°, Z = 4 and V = 2107.01(7) Å3.  相似文献   

20.
Preparation, Crystal Structures, Vibrational Spectra, and Normal Coordinate Analysis of the Linkage Isomeric Chlororhodanoiridates(III) trans-[IrCl2(SCN)4]3? and trans-[IrCl2(NCS)(SCN)3]3? By treatment of Na2[IrCl6] with NaSCN in 2N HCl the linkage isomers trans-[IrCl2(SCN)4]3? and trans-[IrCl2(NCS)(SCN)3]3? are formed which have been separated by ion exchange chromatography on diethylaminoethyl cellulose. X-ray structure determinations on single crystals of trans-(n-Bu4N)3[IrCl2(SCN)4] ( 1 ) (monoclinic, space group P21/a, a = 18.009(4), b = 15.176(3), c = 23.451(4) Å, β = 93.97(2)°, Z = 4) and trans-(Me4N)3[IrCl2(NCS)(SCN)3] ( 2 ) (monoclinic, space group P21/a, a = 17.146(5), b = 9.583(5), c = 18.516(5) Å, β = 109.227(5)°, Z = 4) reveal the complete ordering of the complex anions. The via S or N coordinated thiocyanate groups are bonded with Ir? S? C angles of 105.7–109.7° and the Ir? N? C angle of 171.4°. The torsion angles Cl? Ir? S? C and N? Ir? S? C are 3.6–53.0°. The IR and Raman spectra of ( 1 ) are assigned by normal coordinate analysis using the molecular parameters of the X-ray determination. The valence force constants are fd(IrS) = 1.52 and fd(IrCl) = 1.72 mdyn/Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号