首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
基于高光谱遥感监测植被叶绿素含量的一种植被指数MTCARI   总被引:3,自引:0,他引:3  
通过对现有的植被指数模型的研究,指出了TCARI模型的不足,进而提出关于模型的改进。利用PROSPECT+SAIL模型模拟出不同叶绿素含量和不同叶面积指数(LAI)下的作物冠层光谱,代入模型演算相关常数因子,得到了改进的转换型叶绿素吸收反射率指数MTCARI,最后通过引入土壤背景调节指数OSAVI,提出了最终的模型。经过实测数据验证,模型有较好的可靠性。  相似文献   

2.
遥感是开展地面/近地面、航空及航天层次无损伤探测植物叶绿素信息的主要手段。目前多波段计算光谱指数方法已被广泛地应用于植被冠层叶绿素含量的经验/半经验反演及应用中。考虑不同作物及同种作物不同品种间存在着一定的植被叶倾角分布(LAD)特征差异,针对叶倾角分布对光谱指数反演冠层叶绿素含量(CCC)的影响进行分析,并开展针对叶倾角分布变化不敏感的叶绿素相关光谱指数优选和冠层叶绿素反演建模研究。基于PROSAIL辐射传输模型模拟了不同叶片叶绿素含量(LCC)、叶面积指数(LAI)和LAD对应的冠层反射率数据。模拟结果显示,在相同LAI和LCC条件下,不同LAD对应的冠层反射率有明显差异,冠层反射率随着平均叶倾角的增加而降低。通过计算12个常用的叶绿素相关光谱指数与CCC的相关性指标,来评估光谱指数在不同LAD下反演叶绿素含量的敏感性差异,并依次优选出MTCI,MNDVI8,MNDVI1和CIred-edge4个对LAD变化较不敏感的叶绿素相关光谱指数。利用玉米实测数据对光谱指数进行冠层叶绿素估测的建模和模型检验,模型的建立和验证结果显示,MNDVI8对LAD变化最不敏感,反演模型的精度最高,决定系数R2=0.70,均方根误差RMSE=22.47 μg·cm-2。CIred-edge(R2=0.63,RMSE=24.06 μg·cm-2),MNDVI(R2=0.66,RMSE=24.07 μg·cm-2)和MTCI(R2=0.65,RMSE=26.76 μg·cm-2)反演模型的精度较为接近并稍弱于MNDVI8。通过对反演结果分析得出结论,不同的光谱指数对LAD变化的敏感性不同,优选的光谱指数普遍对叶绿素含量具有较好的相关性和敏感性,其中MNDVI8受LAD影响最小,能较高精度的反演LAD变化下的玉米冠层叶绿素含量。优选的其他光谱指数MTCI,CIred-edge和MNDVI1反演能力虽然稍弱于MNDVI8,但受LAD影响较小,同样具有较好的反演能力。该工作开展LAD对光谱指数叶绿素反演的敏感性分析和光谱指数优选研究,其实测数据的检验结果和模拟数据的分析结果一致;基于优选光谱指数的冠层叶绿素含量反演建模结果及精度分析结论,对开展缺乏叶倾角分布差异先验知识下的大范围作物叶绿素含量遥感估测和应用具有借鉴意义。  相似文献   

3.
植被叶片叶绿素含量反演的光谱尺度效应研究   总被引:1,自引:0,他引:1  
目前光谱指数方法已被广泛地应用于植被叶绿素含量的反演中,考虑到不同传感器的光谱响应存在差异,研究了光谱尺度效应对光谱指数反演植被叶片叶绿素含量的影响。基于PROSPECT模型模拟了不同叶绿素含量(5~80 μg·cm-2)下的5 nm叶片光谱反射率数据,并利用高斯光谱响应函数将其分别模拟成10~35 nm六种波段宽的光谱数据,再分析评价5~35 nm波段宽下光谱指数与叶片叶绿素含量的相关性、对叶片叶绿素含量变化及对波段宽变化的敏感性。最后,利用波段宽为40~65 nm的反射率数据对光谱指数反演植被叶绿素含量的光谱尺度效应进行验证。结果表明,通用光谱指数(vegetation index based on universal pattern decomposition method, VIUPD)反演叶绿素含量的精度最高,反演值与真实值拟合程度最好;归一化差值植被指数(normalized difference vegetation index, NDVI)和简单比值指数(simple ratio index, SRI)其次,虽然其决定系数R2高达0.89以上,但反演的叶绿素含量值小于真实值;其他光谱指数的反演结果较差。VIUPD对叶绿素含量具有较好的相关性和敏感性,受光谱尺度效应影响较小,具有较好的反演能力,这一结论恰好验证了其“独立于传感器”的特性,同时证明了VIUPD在多源遥感数据反演植被理化参量的研究中具有更好的应用前景。  相似文献   

4.
基于 PROSPECT模型的蔬菜叶片叶绿素含量和SPAD值反演   总被引:1,自引:0,他引:1  
叶绿素含量是衡量植物营养和病虫害发生情况的重要指标。传统的分光光度法对植物叶片破坏性较大且无法实时、快速、无损地获取叶绿素含量。新兴的利用叶绿素仪测量叶绿素相对含量(以下简称SPAD值)的方法不能定量获取实际含量。光学辐射传输模型PROSPECT从生物物理、化学的角度以及能量传输的过程出发,定量描述了叶片色素、水分、结构参数等对叶片反射光谱的影响。因此,提出利用PROSPECT模型同时反演蔬菜叶片叶绿素含量和SPAD值,实时、快速、无损、定量获取植物叶片叶绿素的含量。第一,多次测量三种蔬菜叶片的反射光谱,并用叶绿素仪测量SPAD值。然后,预处理光谱数据,获得平均反射率光谱。第二,以欧式距离为评价函数,利用PROSPECT模型对实测反射率光谱进行拟合。拟合过程中三种蔬菜欧式距离最大为0.008 9,最小为0.006 4,平均为0.007 5,表明该模型能够很好地拟合蔬菜叶片的反射率光谱。第三,根据拟合结果,反演叶绿素含量和透射率光谱,再根据透射率光谱获取叶片在940和650 nm波长处的光透过率,计算叶片的反演SPAD值。第四,建立反演叶绿素含量、反演SPAD值与实测SPAD值的关系模型。结果表明: (1)利用该模型反演得到的叶绿素含量值与实测SPAD值有较好的线性关系, 其关系模型为:y=1.463 3x+16.374 3,两者相关系数为0.927 1,模型的决定系数为0.862,均方根误差为2.11;(2)利用该模型反演得到的SPAD值与实测SPAD值之间线性关系较好,其关系模型为:y=0.986 9x-0.668 3,两者相关系数为0.845 1, 模型的决定系数为0.714 3,均方根误差为3.380 2。研究表明,通过测量植物叶片的反射率光谱,利用PROSPECT模型可以无损、定量地获取蔬菜叶片的叶绿素含量和SPAD值。该方法可推广至其他植物的叶绿素测量和实时监测,为变量施肥、精准种植提供可靠的数据支持。研究结果对蔬菜生长态势的无损监测具有重要的意义。  相似文献   

5.
植被冠层水平叶绿素含量的高光谱估测   总被引:4,自引:0,他引:4  
植物的叶绿素含量指示了其健康状况。大区域范围内植被叶绿素含量信息的提取可以用于评价植被的生长状况,实现对生态环境的监测。对于农田系统而言,作物叶绿素含量的估测还可以对施肥等田间操作提供支持。文章利用辐射传输模型模拟多组不同状态下的植被冠层光谱反射率,通过对模拟数据的冠层叶绿素含量以及冠层光谱之间关系的分析,构建了估测植被冠层水平叶绿素含量的光谱指数模型。该模型对冠层叶绿素含量的方差解释量达到了75%以上。分别使用野外实测冠层光谱和Hyperion高光谱遥感影像对试验区进行验证。结果证明该模型对冠层水平的叶绿素含量估测效果较好,具有应用价值。  相似文献   

6.
晚播条件下基于高光谱的小麦叶面积指数估算方法   总被引:1,自引:0,他引:1  
利用高光谱遥感技术,分析晚播条件下小麦叶片与冠层模式光谱特征和叶面积指数(LAI)的变化规律,建立了适用于晚播小麦的叶面积指数估算方法。研究结果表明:(1)从红光和蓝紫光420~663 nm波段提取的叶绿素光谱反射率植被指数(CSRVI)与旗叶SPAD值做相关性分析,结果表明正常播期和晚播处理在叶片模式的相关系数分别为0.963*和0.997**,达显著和极显著水平。(2)利用相关性分析,得出两个播期处理的LAI与SPAD值相关系数分别是0.847*和0.813*,均达到显著水平。SPAD值与LAI及CSRVI指数均具有相关性,可以用CSRVI指数建立LAI的估算模型。(3)对叶片模式和冠层模式光谱曲线特征分析得出,叶片模式中在680~780 nm处的反射率呈现陡升趋势,在可见光波段的446和680 nm和近红外波段的1 440和1 925 nm处各有两个明显的吸收波谷,在540~600,1 660和2 210 nm波段处有两个明显的反射波峰;三种冠层模式中60°模式下的光谱反射率整体表现为最高。(4)将各波段反射率与叶面积指数做相关性分析得出在可见光波段范围内,光谱反射率与LAI总体呈现负相关性,500~600 nm处有一个波峰。(5)将三种冠层模式下(仪器入射角度分别与地面呈30°,60°和90°夹角)的等效植被指数与LAI做相关性分析得出:60°冠层模式下八种植被指数与正常播期LAI的相关性均未达显著水平,比值植被指数(RVI)、归一化植被指数(NDVI)、增强型植被指数(EVI)、再次归一化植被指数(RDVI)、土壤调整植被指数(SAVI)、修改型土壤调整植被指数(MSAVI)的等六种植被指数与晚播条件下的LAI具有显著和极显著相关关系;90°冠层模式下CSRVI指数与正常播期处理的LAI具有显著相关关系,NDVI指数与晚播处理的LAI具有显著相关关系;30°冠层模式下的八种植被指数与两播期处理的LAI的相关性均未达显著水平。综合分析CSRVI指数、NDVI指数的相关性最高,这两种指数最具有估算LAI的潜力。(6)通过三种冠层模式所计算的植被指数估算LAI模型,结果表明,正常播期条件下,其最佳估算模型是90°冠层模式CSRVI指数所建立的线性模型Y=-7.873 6+6.223 8X;晚播条件下的最佳模型是60°冠层模式RDVI指数所建立的幂函数模型Y=30 221 333.33X17.679 1,两个模型的决定系数R2分别为0.950*和0.974**。研究表明试验中所提取的CSRVI指数能够反映旗叶叶绿素含量,可以通过光谱仪器的叶片模式对小麦生育期内叶绿素含量进行监测;通过冠层模式计算的CSRVI指数和RDVI指数所建立的LAI估算模型可以对小麦的LAI进行无损害观察。  相似文献   

7.
精确反演农作物冠层叶面积指数对指导作物管理和作物估产具有非常重要的意义。以吉林市郊区玉米种植区为试点,考虑冠层叶片水分含量对LAI的贡献,在NDVI的基础上结合表征冠层叶片水分含量的植被指数DSWI,提出一种归一化综合植被指数NCVI,以此建立模型反演LAI,并对模型进行检验。结果表明:NCVI模型反演LAI值与实测值之间存在良好的对应关系,此模型突破了传统经验模型对稠密冠层LAI反演的局限,对LAI值大于3的冠层反演效果良好;另外,NCVI模型对土壤水环境十分敏感,在干旱半干旱地区的反演效果明显优于一般区域。  相似文献   

8.
叶片含水量是反映作物生理特性的一个重要参数, 对生态环境的研究具有重要意义。采用小波分析方法, 分析叶片含水量对反射率的影响特征, 建立综合利用多波段信息的作物叶片水分含量反演模型。基于PROSPECT模型的辐射传输理论, 推导出由叶片反射率光谱的小波系数反演叶片水分含量CW的理论模型。利用六种常用的小波函数, 对叶片组分水、干物质和白化基本层的吸收光谱进行小波分解。选取对水分变化最敏感, 同时对其他组分不敏感的分解尺度和波段位置, 找到能稳定突出水的光谱特征的小波系数。结果表明: bior1.5小波函数在尺度为200 nm, 波段位置为1 405和1 488 nm的小波系数具有上述特征。建立由叶片反射率光谱的bior1.5小波系数反演叶片水分含量CW的反演模型, 模型有两个转换系数a和Δ都受叶片结构参数N的影响。利用PROSPECT模型生成模拟光谱数据集, 校正建立的叶片水分含量反演模型中的两个转换系数a和Δ, 并与LOPEX93实验光谱数据集结合验证反演模型。结果表明: 反演模型不仅比传统基于植被指数的统计模型在精度上有提高(反演值与实测值的R2最高达到0.987), 而且更加稳定, 普适性更高。研究表明, 小波分析方法在利用高光谱数据反演作物叶片水分含量方面具有独特的优势。  相似文献   

9.
叶片含水量是反映作物生理特性的一个重要参数,对生态环境的研究具有重要意义。采用小波分析方法,分析叶片含水量对反射率的影响特征,建立综合利用多波段信息的作物叶片水分含量反演模型。基于PROSPECT模型的辐射传输理论,推导出由叶片反射率光谱的小波系数反演叶片水分含量CW的理论模型。利用六种常用的小波函数,对叶片组分水、干物质和白化基本层的吸收光谱进行小波分解。选取对水分变化最敏感,同时对其他组分不敏感的分解尺度和波段位置,找到能稳定突出水的光谱特征的小波系数。结果表明:bior1.5小波函数在尺度为200 nm,波段位置为1 405和1 488 nm的小波系数具有上述特征。建立由叶片反射率光谱的bior1.5小波系数反演叶片水分含量CW的反演模型,模型有两个转换系数a和Δ都受叶片结构参数N的影响。利用PROSPECT模型生成模拟光谱数据集,校正建立的叶片水分含量反演模型中的两个转换系数a和Δ,并与LOPEX93实验光谱数据集结合验证反演模型。结果表明:反演模型不仅比传统基于植被指数的统计模型在精度上有提高(反演值与实测值的R2最高达到0.987),而且更加稳定,普适性更高。研究表明,小波分析方法在利用高光谱数据反演作物叶片水分含量方面具有独特的优势。  相似文献   

10.
基于高斯回归分析的水稻氮素敏感波段筛选及含量估算   总被引:1,自引:0,他引:1  
水稻氮素含量的准确监测是稻田精准施肥的重要环节,水稻叶片氮素含量发生变化会引起叶片、冠层的光谱发射率发生变化,高光谱遥感是目前作物氮素无损监测的关键技术之一。以2018年-2019年湖北监利两年水稻氮肥试验为基础,分别获取水稻分蘖期、拔节期、孕穗期、扬花期、灌浆期五个生育期水稻叶片和冠层两个尺度的高光谱反射率数据及对应的叶片氮素含量数据,利用单波段原始光谱和一阶导数光谱的相关性分析、高斯过程回归(GPR)等方法筛选水稻全生育期叶片及冠层尺度氮素敏感波段。针对敏感波段,利用单波段回归分析、随机森林(RF)、支持向量回归(SVR)、高斯过程回归-随机森林(GPR-RF)、高斯过程回归-支持向量回归(GPR-SVR)和GPR构建水稻氮素监测模型,并进行精度对比,以确定水稻叶片在各生育期的氮素估算最佳模型。结果表明:GPR筛选的敏感波段符合水稻氮素含量及光谱变化的规律。相同条件下,叶片模型精度整体高于冠层模型。相关性分析模型中,叶片尺度原始光谱模型更好,冠层尺度刚好相反,冠层一阶导数光谱可以减弱稻田背景噪声的影响。其中,叶片最佳模型建模集R2为0.79,验证集R2为0.84;冠层最佳模型建模集R2为0.80,验证集R2为0.77。与相关性回归分析模型相比,机器学习模型受生育期影响小(R2>0.80,NRMSE<10%)。其中,RF比SVR更适合对GPR敏感波段建模,GPR-RF模型可以用1.5%左右的波段达到RF模型使用全部波段的精度。五种方法中,GPR模型对生育期敏感度最低、叶片及冠层尺度效果都很好(R2>0.94,NRMSE<6%)。且与其他四种机器学习方法相比,GPR模型可有效提高冠层氮素含量估算的精度和稳定性(R2增加0.02,NRMSE降低1.2%)。GPR方法可为筛选作物氮素高光谱敏感波段、反演各生育期叶片及冠层氮素含量提供方法参考。  相似文献   

11.
基于冠层尺度的枣树色素含量的高光谱估算模型   总被引:1,自引:0,他引:1  
植物冠层色素含量与氮素含量具有高度的相关性,是农业遥感中的关键研究因素。本研究的主要目的是:(1)对比偏最小二乘回归和支持向量机两种建模方法对枣树冠层色素的预测精度;(2)构建基于高光谱数据的枣树冠层色素含量定量反演模型,为枣树冠层色素含量的快速、无损、廉价、环保的测定提供一定的理论依据和技术支持。相关性分析结果表明,枣树冠层色素与高光谱数据之间具有较好的相关性,但叶绿素、叶绿素a要优于叶绿素b和类胡萝卜素。独立样本对模型的预测性能检验结果表明,偏最小二乘回归和支持向量机均能有效的估算枣树色素含量,但不同色素的偏最小二乘回归模型和支持向量机模型的预测精度存在一定的差异,叶绿素和类胡萝卜素的支持向量机模型的预测精度要高于偏最小二乘回归模型,而叶绿素a和叶绿素b则相反。比较不同色素的最佳反演模型的预测精度表明,叶绿素、叶绿素a和类胡萝卜素的预测精度要优于叶绿素b,前三者的决定系数大于0.8,残余预测误差高于2.0,平均相对误差低于13%,而叶绿素b的对应值分别为0.60%,20.79%和1.79%。  相似文献   

12.
小麦籽粒蛋白质含量是衡量小麦营养品质的重要指标,实现小麦品质快速的预测预报对于粮食收购部门和加工企业具有重要意义。研究基于作物叶绿素/氮素速测仪SPAD及Multiplex 3,获取冬小麦不同生育期叶片及冠层叶绿素参数,从小麦个体及群体参量两方面进行冬小麦收获期籽粒蛋白质含量及蛋白产量的预测研究。试验于2012年4—6月在国家精准农业研究示范基地开展,研究结果表明,冬小麦返青至灌浆初期,小麦冠层氮素密度与籽粒蛋白质含量的相关性优于叶片氮素含量与蛋白质含量的相关性,灌浆中期两者与籽粒蛋白质含量相关性差别不大;小麦叶片SPAD值与叶片氮素含量相关性总体优于其与冠层氮素密度的相关性,而叶绿素荧光参数SFR_G, SFR_R与冠层氮素密度的相关性优于其与叶片氮素含量的相关性;叶片SPAD与籽粒蛋白质含量的相关性在拔节期最弱,在灌浆中期最强,小麦冠层叶绿素荧光参数SFR_G, SFR_R与籽粒蛋白质含量相关性在返青至拔节期不显著,但孕穗期开始显著相关,在灌浆中期相关性最强且明显优于同期叶片SPAD与籽粒蛋白质含量的相关性;冬小麦籽粒蛋白产量与叶片SPAD值在小麦孕穗期至灌浆期显著相关,与SFR_G和SFR_R在小麦灌浆期显著相关;研究基于灌浆中期SPAD值及SFR_R值,构建了冬小麦籽粒蛋白质含量及籽粒蛋白产量的预测模型,其中,籽粒蛋白质含量预测模型复相关指数分别为0.426和0.497,模型标准误差分别为0.060%和0.055%,籽粒蛋白产量预测模型复相关指数分别为0.366和0.386,模型标准误差分别为125.367和123.454 kg·ha-1。研究表明,利用叶片SPAD值及冠层叶绿素荧光信息,在小麦收获前进行品质的快速预测是可行的。  相似文献   

13.
叶片光化学植被指数(PRI)的修正及其敏感性分析   总被引:4,自引:1,他引:3  
光化学植被指数(PRI)被成功的应用于估算不同叶片生化组分的光能利用率(LUE),这些生化组分包括叶片含水量、氮元素浓度等。以往的研究中已经成功建立了叶片、冠层和景观尺度PRI和LUE的相关关系。但是,为了利用PRI更加准确地估算叶片LUE,很多问题仍然亟需解决,比如当LUE高于0.03 mol CO2 mol-1 PPFD(photosynthetic photon flux density),PRI会出现一个明显的饱和区域以及PRI和LUE关系会随季节发生较大变化。文章对PRI进行了修正,并基于PROSPECT模型对这一修正形式进行了4个参数的敏感性分析。分析结果表明,叶片SR-PRI(Simple ratio PRI) 对叶肉结构参数(N)、叶绿素浓度(cab)敏感性要高于叶片的等效水厚(cw) 和干物质浓度(cm)。因此叶肉结构参数(N) 和叶绿素浓度(cab)的微小变化都会造成SR-PRI的较大变化,进而影响到LUE的估算精度。对SR-PRI的实证实验表明,这一指数也能够很好地用来估算叶片的光能利用率并且结果要优于PRI和LUE之间的相关关系。SR-PRI最重要的一方面在于其更清晰的物理意义和对531 nm处反射率变化的敏感性,因为这一波段位置的反射率变化是评价光能利用率的核心参数。  相似文献   

14.
不同地类春小麦拔节期冠层光谱与叶绿素差异研究   总被引:1,自引:0,他引:1  
为实现对不同地类春小麦叶绿素含量的无损估测,通过分析春小麦冠层光谱与叶绿素含量的相关性,以及对其红边拐点位置与叶绿素含量做回归分析,分别建立了水浇地和旱地春小麦叶绿素含量估测模型并检验了模型精度。结果表明: (1) 拔节期水浇地和旱地春小麦叶绿素含量差异较大,且前者明显大于后者。虽然各地类春小麦光谱反射率与叶绿素含量均有很好的相关性,但旱地春小麦的相关性在可见光和近红外波段均低于水浇地。(2)在可见光范围,旱地春小麦冠层光谱反射率高于水浇地,而在近红外区则相反。阴坡地由于土壤水分高,春小麦长势较好,冠层光谱特点与水浇地差异不大。(3)建立的不同地类春小麦反射光谱红边拐点位置与叶绿素含量的监测模型表明,水浇地春小麦叶绿素含量的监测可用线性模型,预测精度达94.06%。而旱地则宜用二项式模型,预测精度为97.15%,比其线性模型高10.48%。  相似文献   

15.
冠层是植被进行生态过程的主要层次,森林冠层结构影响冠层生化组分的遥感反演,因此对其光谱特征的分析有助于提高冠层生化组分反演的精度。以长白山温带阔叶红松林为研究对象,利用Hyperion高光谱数据提取不同林冠反射率,运用连续统去除和光谱一阶微分法进行光谱变换,定量分析森林冠层的光谱特征。通过计算样方阔叶树种优势度(BFDI),以及一系列光谱指数(NIR,NDVI,EVI,NDNI,SPRI*NDVI和SPRI*EVI),探讨冠层结构组成对其光谱特征及光谱指数的影响。结果表明:(1)相比阔叶林冠层,针阔混交林、美人松林和樟子松林冠层光谱的红边有左移趋势,斜率明显下降,蓝边、黄边斜率特征也相应减弱,近红外波段反射率明显下降,可见光波段的归一化反射率有上升趋势,表明不同林冠,尤其针叶林与阔叶林林冠之间的光谱特征差异明显。(2)BFDI对冠层NIR反射率和三边斜率有明显的影响,与光谱指数显著相关(P<0.01),表明BFDI影响森林光谱指数。BFDI与NDVI,EVI,SPRI*EVI,NIR,SPRI*NDVI,NDNI的R2分别达到0.90,0.83,0.83,0.81,0.68,0.59,揭示了BFDI对于冠层绿度、叶面积指数、植被生产力以及冠层叶氮浓度等植被参数存在一定影响。研究表明,利用星载高光谱数据结合地面样方调查可以很好地阐明林冠结构组成对于光谱特征的影响,也对优化植被冠层生化组分和森林生态系统生产力的遥感反演具有借鉴意义。  相似文献   

16.
运用PLS算法由小麦冠层反射光谱反演氮素垂直分布   总被引:10,自引:3,他引:7  
文章提出了利用遥感光谱数据反演小麦冠层氮素垂直分布的化学计量学方法,运用偏最小二乘算法(PLS),穷尽测定的小麦田间冠层可见光和近红外光谱不同波长处的冠层光谱反射率及其组合与小麦不同层次的叶绿素、叶片全氮含量之间的关系。通过2001~2002年的建模和2003~2004年的验证试验,求得了用PLS算法对叶片全氮上层、中层、下层垂直分布估算结果的相关性。表明PLS算法能够用于反演作物冠层生物化学参数的垂直分布。运用PLS的小麦氮素垂直分布的估算方法,较以往单一冠层估算方法精度明显提高,对于生产上迫切需求对作物中、下层叶片氮素状况的监测来指导适时和适量施肥具有指导意义。  相似文献   

17.
叶绿素含量是评价农作物健康状况、生产能力和环境胁迫的重要指标,实时、快速、准确获取农作物叶片叶绿素含量对监测农作物生长状况具有重要意义.遥感是获取区域和全球农作物叶片叶绿素含量的有效途径,但已有的作物叶片叶绿素含量遥感反演研究未充分考虑下垫面背景的干扰,影响了反演精度.为此,以Sentinel-2遥感卫星影像为数据源,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号