首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
2.
3.
A shot in the arm for cancer treatment: Two MUC1 tetanus toxoid vaccines were synthesized and induced a strong immune response in mice. The antibodies elicited by the vaccines show a high selectivity for the tumor cells in mammary carcinoma tissues and also distinguish between tumor tissues at different stages.  相似文献   

4.
5.
Glycoproteins on epithelial tumor cells often exhibit aberrant glycosylation profiles. The incomplete formation of the glycan side chains resulting from a down-regulated glucosamine transfer and a premature sialylation results in additional peptide epitopes, which become accessible to the immune system in mucin-type glycoproteins. These cancer-specific structure alterations are considered to be a promising basis for selective immunological attack on tumor cells. Among the tumor-associated saccharide antigens, the (2,3)-sialyl-T antigen has been identified as the most abundant glycan, found in several different carcinoma cell lines. According to a linear biomimetic strategy, the (2,3)-sialyl-T antigen was synthesized by a stepwise glycan chain extension of a protected galactosamine-threonine precursor. For the construction of immunostimulating antigens combining both peptide and saccharide motifs, this antigen was incorporated into glycopeptide partial structures from the mucins MUC1 and MUC4 by sequential solid-phase synthesis.  相似文献   

6.
In studies within the realm of cancer immunotherapy, the synthesis of exactly specified tumor‐associated glycopeptide antigens is shown to be a key strategy for obtaining a highly selective biological reagent, that is, a monoclonal antibody that completely differentiates between tumor and normal epithelial cells and specifically marks the tumor cells in pancreas tumors. Mucin MUC1, which is overexpressed in many prevalent cancers, was identified as a promising target for this strategy. Tumor‐associated MUC1 differs significantly from that expressed by normal cells, in particular by altered glycosylation. Structurally defined tumor‐associated MUC1 cannot be isolated from tumor cells. We synthesized MUC1–glycopeptide vaccines and analyzed their structure–activity relationships in immunizations; a monoclonal antibody that specifically distinguishes between human normal and tumor epithelial cells was thus generated.  相似文献   

7.
8.
9.
10.
In a new concept of fully synthetic vaccines, the role of T‐helper cells is emphasized. Here, a synthetic antitumor vaccine consisting of a diglycosylated tumor‐associated MUC1 glycopeptide as the B‐cell epitope was covalently cross‐linked with three different T‐helper‐cell epitopes via squaric acid ligation of two linear (glyco)peptides. In mice this four‐component vaccine administered without external immune‐stimulating promoters elicit titers of MUC1‐specific antibodies that were about eight times higher than those induced by a vaccine containing only one T‐helper‐cell epitope. The promising results indicate that multiple activation of different T‐helper cells is useful for applications in which increased immunogenicity is required. In personalized medicine, in particular, this flexible construction of a vaccine can serve as a role model, for example, when T‐helper‐cell epitopes are needed that match human leukocyte antigens (HLA) in different patients.  相似文献   

11.
The membrane‐bound tumor‐associated glycoprotein MUC1 is aberrantly glycosylated in cancer cells compared with normal cells, and is therefore considered an attractive target for cancer immunotherapy. However, tumor‐associated glycopeptides from MUC1 do not elicit a sufficiently robust immune response. Therefore, antitumor vaccines were developed, which consist of MUC1 glycopeptides as the B epitopes and immune‐stimulating toll‐like receptor 2 (TLR 2) lipopeptide ligands. These fully synthetic vaccine candidates were prepared by solid‐phase synthesis of the MUC1 glycopeptides. The Pam3Cys lipopeptide, also synthesized on solid‐phase, was C‐terminally coupled to oligovalent lysine cores, which N‐terminally incorporate O‐propargyl oligoethylene glycol acyl side chains. The MUC1 glycopeptides and lipopeptide lysine constructs were then conjugated by click chemistry to give oligovalent synthetic vaccines. Oligovalent glycopeptide–lipopeptide conjugates are considered more immunogenic than their monovalent analogues.  相似文献   

12.
Vaccine adjuvants have been widely used to enhance the immunogenicity of the antigens and elicit long-lasting immune response. However, only few vaccine adjuvants have been approved by the FDA for human use so far. Therefore, there is still an urgent need to develop novel adjuvants for the potential applications in clinical trials. Herein, non-nucleotide small molecule STING agonist di ABZI was employed to construct glycopeptide antigen based vaccines for the first time. Immunological evaluation indicated di ABZI not only enhanced the production of antibodies and T cell immune responses, but also inhibited tumor growth in tumor-bearing mice in glycopeptide-based subunit vaccines. These results indicated that di-ABZI demonstrates a high potential as adjuvant for the development of cancer vaccines.  相似文献   

13.
The eukaryotic vectors VR1012 expressing survivin or 33 tandem repeats of human mucin 1(MUC1)(VNTRs),namely,VR1012-S and VR1012-VNTR(VNTR=variable number of tandem repeat),were constructed by cloning s...  相似文献   

14.
15.
16.
17.
We report herein the glycation sites in a vaccine candidate for cholera formed by conjugation of the synthetic hexasaccharide fragment of the O‐specific polysaccharide of Vibrio cholerae, serotype Ogawa, to the recombinant tetanus toxin C‐fragment (rTT–Hc) carrier. Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry analysis of the vaccine revealed that it is composed of a mixture of neoglycoconjugates with carbohydrate : protein ratios of 1.9 : 1, 3.0 : 1, 4.0 : 1, 4.9 : 1, 5.9 : 1, 6.9 : 1, 7.9 : 1 and 9.1 : 1. Liquid chromatography tandem mass spectrometry (LC‐MS/MS) analysis of the tryptic and GluC V8 digests allowed identification of 12 glycation sites in the carbohydrate–protein neoglycoconjugate vaccine. The glycation sites are located exclusively on lysine (Lys) residues and are listed as follows: Lys 22, Lys 61, Lys 145, Lys 239, Lys 278, Lys 318, Lys 331, Lys 353, Lys 378, Lys 389, Lys 396 and Lys 437. Based on the 3‐D representation of the rTT–Hc protein, all the glycation sites correspond to lysines located at the outer surface of the protein. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The use of succinamic acid (H2sucm)/N,N′-chelate (2,2′-bipyridine, bpy; 4,4′-dimethyl-2,2′-bipyridine, dmbpy; 1,10-phenanthroline, phen) ‘ligand blends’ in CuX2·yH2O (X = NO3, y = 3; X = Cl, y = 0) chemistry has yielded the new complexes [Cu2(Hsucm)3(bpy)2](NO3)·0.5MeOH (1·0.5MeOH), [Cu2(Hsucm)(OH)Cl(bpy)2](OH)·3.6H2O (5·3.6H2O) and [Cu2(Hsucm)2Cl2(phen)2] (6). The succinamate(−1) ion behaves as a carboxylate ligand and exists in two different coordination modes in the structures of the above complexes, i.e., the common syn, syn μ2OO′ in 1, 5 and 6, and the μ22OO′ in 1. The primary amide group of Hsucm remains uncoordinated and participates in intermolecular hydrogen bonding interactions leading to 1D, 2D and 3D networks. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the Hsucm ligands.  相似文献   

19.
In this paper, a novel composite based on the formation of Schiff base on silica nanoparticles was facilely synthesized. Firstly, silica nanoparticles, which contain silanol groups (Si-OH), were modified with (3-aminopropyl)trimethoxysilane. Then, the modified silica reacted with 1-hydroxy-2-acetonaphthone to form a novel Schiff base/silica composite. The synthesized composite was characterized using several tools such as XRD, FT-IR, FE-SEM, N2 adsorption/desorption analyzer, and CHN analyzer. The considerable reduction at 2θ = 21.9° in the intensity of the XRD peak of the composite is owing to the formation of the Schiff base. Also, the observed FT-IR bands in the composite at 3440 and 1604 cm?1 are owing to the stretching and bending vibrations of OH and/or CN, respectively. The FE-SEM images confirmed that the silica includes irregular shapes whereas the composite possesses a flaky surface owing to the formation of the Schiff base. Elemental analysis of the composite demonstrated that the % C, % H, and % N are 15.26, 3.24, and 1.65 %, respectively. The BET surface area and total pore volume of the composite were reduced because the formed Schiff base blocks the pores of silica. The synthesized composite was employed for the efficient removal of Ni(II), Cu(II), Zn(II), and Hg(II) ions from aqueous media. The maximum uptake capacity of the composite toward Cu(II), Hg(II), Zn(II), and Ni(II) ions is 68.630, 50.942, 45.126, and 40.420 mg/g, respectively. The adsorption processes of the studied metal ions were spontaneous, chemical, and well described using the pseudo-second-order kinetic model and Langmuir equilibrium isotherm. The synthesized composite can be successfully regenerated and utilized various times in the removal of studied metal ions from aqueous media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号