首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Complexes of new Schiff base ligands generated in situ from the reaction of 1‐aminoglycerol, aldehydes, and metal ions are reported. [Cu4(HL1)4] ( 1 ) and [Ni4O(HL1)3(H2O)3)] ? 6 H2O ? DMF ? DMSO ( 2 ) have M4O4 cubane cores, with the L/M molar ratios of 4:4 and 3:4, respectively. [MnIII3MnIINaOCl4(HL1)3] ? 3 M eCN ( 3 ) has a unique pentanuclear trigonal propeller‐shaped MnIII3MnIINa core structure, and the coordination assemblies are linked by hydrogen bonds to afford a 3D channel structure. [Cu2(HL2)2] ( 4 ) has a bis(μ2‐alkoxo)‐bridged Cu2O2 core, with the binuclear species linked by hydrogen bonds to afford a 1D double‐chain. [Ni7(OH)2(OCH3)4(H2L3)2(MeOH)2(H2O)2]‐ (ClO4)2 ? 10 H2O ( 5 ) has a heptanuclear structure containing heptadentate di‐Schiff base ligands, with the nickel(II) ions bridged by phenoxo, alkoxo, hydroxo, and methoxo groups to afford a very rare face‐sharing hexadruple defective cubane core with a Ni@Ni6 arrangement. The lattice water molecules are linked by hydrogen bonds to form helical chains, which are further hydrogen‐bonded to the coordination moieties to afford a 2D network. Variable temperature magnetic susceptibility measurements and nonlinear data‐fitting revealed that the “2+4” type of cubane complex 1 shows medium intradimeric ferromagnetic interactions and weak interdimeric ferromagnetic interactions. For complexes 2 and 5 , coexistent ferro‐ and antiferromagnetic couplings afford a non‐zero spin ground state. However, compound 3 shows antiferromagnetic interactions between MnIII and MnII, and ferromagnetic interactions between the MnIII centers, resulting in a global antiferromagnetic behavior. In conclusion, the reaction of 1‐aminoglycerol with aldehydes and metal salts afforded polynuclear complexes with a rich structural diversity and remarkable magnetic behavior.  相似文献   

2.
The reaction of [Mn(O2CMe)2] · 4H2O with pdH2 (1,3-propanediol) or mpdH2 (2-methyl-1,3-propanediol) in the presence of NaN3 in MeCN/py (py = pyridine) results in the formation of two new one-dimensional coordination polymers composed of a [MnIII6MnII114-O)83-N3)4]25+ octahedral unit. The peripheral ligation is completed by pd2? (or mpd2?), acetate, pyridine and μ-1,3-N3? ligands. The latter bridges each Mn17 unit to its neighboring one, resulting in the formation of the two 1-D coordination polymers. Variable-temperature dc magnetic susceptibility studies indicate the existence of predominantly ferromagnetic interactions and a resulting giant ground state spin within the Mn17 units and intermolecular antiferromagnetic exchange interactions between the neighboring Mn17 units that result in diamagnetic ground spin states for both polymeric compounds.  相似文献   

3.
The reaction of MnII(O2CMe)2 and NaCN or LiCN in water forms a light green insoluble material. Structural solution and Rietveld refinement of high-resolution synchrotron powder diffraction data for this unprecedented, complicated compound of previously unknown composition revealed a new alkali-free ordered structural motif with [MnII43-OH)4]4+ cubes and octahedral [MnII(CN)6]4− ions interconnected in 3D by MnII-N≡C-MnII linkages. The composition is {[MnII(OH2)3][MnII(OH2)]3}(μ3-OH)4][MnII(μ-CN)2(CN)4] ⋅ H2O=[MnII43-OH)4(OH2)6][MnII(μ-CN)2(CN)4] ⋅ H2O, which is further simplified to [Mn4(OH)4][Mn(CN)6](OH2)7 ( 1 ). 1 has four high-spin (S=5/2) MnII sites that are antiferromagnetically coupled within the cube and are antiferromagnetically coupled to six low-spin (S=1/2) octahedral [MnII(CN)6]4− ions. Above 40 K the magnetic susceptibility, χ(T), can be fitted to the Curie–Weiss expression, χ ∝(Tθ)−1, with θ=−13.4 K, indicative of significant antiferromagnetic coupling and 1 orders as an antiferromagnet at Tc=7.8 K.  相似文献   

4.
A number of mononuclear manganese(II) and manganese(III) complexes have been synthesized from tridentate N2O aminophenol ligands (HL1–HL5) formed by reduction of corresponding Schiff bases with NaBH4. Three types of tridentate N2O aminophenols have been prepared by reducing with NaBH4which are (a) Schiff bases obtained by bromo salicylaldehyde reaction with N,N-dimethyl/N,N-diethyl ethylene diamine (HL1, HL2), (b) Schiff bases obtained by condensing salicylaldehyde/bromo salicylaldehyde and picolyl amine (HL3, HL4), (c) pyridine-2-aldehyde and 2-aminophenol (HL5). All the manganese complexes have been prepared by direct addition of manganese perchlorate to the corresponding ligands and were characterized by the combination of i.r., u.v.–vis spectroscopy, magnetic moments and electrochemical studies. The u.v.–vis spectra of all of the manganese(III) complexes show two weak d–d transitions in the 630–520 nm region, which support a distorted octahedral geometry. The electron transfer properties of all of the manganese(III) complexes (1–4 and 6) exhibit mostly similar characteristics consisting two redox couples corresponding to the MnIII → MnII reductions and MnIII → MnIV oxidations. The electronic effect on the potential has also been studied by changing different substituents in the ligands. In all cases, an electron-donating group stabilizes the higher oxidation state and electron withdrawing group prefers the lower oxidation state. The cyclic voltammogram of [MnII(L5)2] shows an irreversible oxidation MnII → MnIII at −0.88 V, followed by another quasi-reversible oxidation MnIII → MnIV at +0.48 V. The manganese(III) complex (3) [Mn(L3)2]ClO4has been characterized by X-ray crystallography.  相似文献   

5.
[CoIII(L1)2·H2O]NO3 (1), [MnII(L1)2·H2O] (2), and [ZnII(L1)2·H2O] (3) with a hydrazone derived from protocatechuic acid (HL1 = C15H13N3O3) were designed, synthesized, and characterized by C, H, N elemental analyses, single-crystal X-ray diffraction, and IR spectra, which revealed that the three complexes are similar structures. Docking study has been done. The urease inhibitory activities of the three complexes were tested. Complexes 1 and 3 showed strong inhibitory activity against jack bean urease with IC50 values of 45.9 and 11.64 μM. Complex 2 had no obvious inhibitory activity to urease; the IC50 was > 50 μM.  相似文献   

6.
《Polyhedron》2003,22(14-17):1857-1863
The syntheses and magnetic properties are reported for three Mn4 single-molecule magnets (SMMs): [Mn4(hmp)6(NO3)2(MeCN)2](ClO4)2·2MeCN (3), [Mn4(hmp)6(NO3)4]·(MeCN) (4), and [Mn4(hmp)4(acac)2(MeO)2](ClO4)2·2MeOH (5). In each complex there is a planar diamond core of MnIII 2MnII 2 ions. An analysis of the variable-temperature and variable-field magnetization data indicate that all three molecules have intramolecular ferromagnetic coupling and a S=9 ground state. The presence of a frequency-dependent alternating current susceptibility signal indicates a significant energy barrier between the spin-up and spin-down states for each of these three MnIII 2MnII 2 complexes. The fact that these complexes are SMMs has been confirmed by the observation of hysteresis in the plot of magnetization versus magnetic field measured for single crystals of complexes 3 and 4. The hysteresis loops for both of these complexes exhibit steps characteristic of quantum tunneling of magnetization. Complex 4 shows its first step at zero field, whereas the first step for complex 3 is shifted to −0.10 T. This shift is attributable to weak intermolecular antiferromagnetic exchange interactions present for complex 3.  相似文献   

7.
The electrochemical and spectroscopic properties of [Mn2(tpp)2(SO4)] (H2tpp=tetraphenylporphyrin=5,10,15,20‐tetraphenyl‐21H,23H‐porphine) were studied to characterize the stability of this compound as a function of solvent, redox state, and sulfate concentration. In non‐coordinating solvents such as 1,2‐dichloroethane, the dimer was stable, and two cyclic voltammetric waves were observed in the region for MnIII reduction. These waves correspond to reduction of the dimer to [MnII(tpp)] and [MnIII(tpp)(OSO3)]?, and reduction of [MnIII(tpp)(OSO3)]? to [MnII(tpp)(OSO3)]2?, respectively. In the coordinating solvent DMSO, [Mn2(tpp)2(SO4)] was unstable and dissociated to form [MnIII(tpp)(DMSO)2]+. A single voltammetric wave was observed for MnIII reduction in this solvent, corresponding to formation of [MnII(tpp)(DMSO)]. In non‐coordinating solvent systems, addition of sulfate (as the bis(triphenylphosphoranylidene)ammonium (PPN+) salt) resulted in dimer dissociation, yielding [MnIII(tpp)(OSO3)]?. Reduction of this monomer produced [MnII(tpp)(OSO3)]2?. In DMSO, addition of SO led to displacement of solvent molecules forming [MnIII(tpp)(OSO3)]?. Reduction of this species in DMSO led to [MnII(tpp)(DMSO)].  相似文献   

8.
The electronic structures of the five members of the electron transfer series [Mo(bpy)3]n (n=3+, 2+, 1+, 0, 1?) are determined through a combination of techniques: electro‐ and magnetochemistry, UV/Vis and EPR spectroscopies, and X‐ray crystallography. The mono‐ and dication are prepared and isolated as PF6 salts for the first time. It is shown that all species contain a central MoIII ion (4d3). The successive one‐electron reductions/oxidations within the series are all ligand‐based, involving neutral (bpy0), the π‐radical anion (bpy.)1?, and the diamagnetic dianion (bpy2?)2?: [MoIII(bpy0)3]3+ (S=3/2), [MoIII(bpy.)(bpy0)2]2+ (S=1), [MoIII(bpy.)2(bpy0)]1+ (S=1/2), [MoIII(bpy.)3] (S=0), and [MoIII(bpy.)2(bpy2?)]1? (S=1/2). The previously described diamagnetic dication “[MoII(bpy0)3](BF4)2” is proposed to be a diamagnetic dinuclear species [{Mo(bpy)3}22‐O)](BF4)4. Two new polynuclear complexes are prepared and structurally characterized: [{MoIIICl(Mebpy0)2}22‐O)]Cl2 and [{MoIV(tpy.)2}22‐MoVIO4)](PF6)2?4 MeCN.  相似文献   

9.
Simultaneous incorporation of both CoII and CoIII ions within a new thioether S‐bearing phenol‐based ligand system, H3L (2,6‐bis‐[{2‐(2‐hydroxyethylthio)ethylimino}methyl]‐4‐methylphenol) formed [Co5] aggregates [CoIICoIII4L2(μ‐OH)2(μ1,3‐O2CCH3)2](ClO4)4?H2O ( 1 ) and [CoIICoIII4L2(μ‐OH)2(μ1,3‐O2CC2H5)2](ClO4)4?H2O ( 2 ). The magnetic studies revealed axial zero‐field splitting (ZFS) parameter, D/hc=?23.6 and ?24.3 cm?1, and E/D=0.03 and 0.00, respectively for 1 and 2 . Dynamic magnetic data confirmed the complexes as SIMs with Ueff/kB=30 K ( 1 ) and 33 K ( 2 ), and τ0=9.1×10?8 s ( 1 ), and 4.3×10?8 s ( 2 ). The larger atomic radius of S compared to N gave rise to less variation in the distortion of tetrahedral geometry around central CoII centers, thus affecting the D and Ueff/kB values. Theoretical studies also support the experimental findings and reveal the origin of the anisotropy parameters. In solutions, both 1 and 2 which produce {CoIII2(μ‐L)} units, display solvent‐dependent catechol oxidation behavior toward 3,5‐di‐tert‐butylcatechol in air. The presence of an adjacent CoIII ion tends to assist the electron transfer from the substrate to the metal ion center, enhancing the catalytic oxidation rate.  相似文献   

10.
Reactions of CeIII(NO3)3?6 H2O or (NH4)2[CeIV(NO3)6] with Mn‐containing starting materials result in seven novel polynuclear Ce or Ce/Mn complexes with pivalato (tBuCO ) and, in most cases, auxiliary N,O‐ or N,O,O‐donor ligands. With nuclearities ranging from 6–14, the compounds present aesthetically pleasing structures. Complexes [CeIV6(μ3‐O)4(μ3‐OH)4(μ‐O2CtBu)12] ( 1 ), [CeIV6MnIII4(μ4‐O)4(μ3‐O)4(O2CtBu)12(ea)4(OAc)4]?4 H2O?4 MeCN (ea?=2‐aminoethanolato; 2 ), [CeIV6MnIII8(μ4‐O)4(μ3‐O)8(pye)4(O2CtBu)18]2[CeIV6(μ3‐O)4(μ3‐OH)4(O2CtBu)10(NO3)4] [CeIII(NO3)5(H2O)]?21 MeCN (pye?=pyridine‐2‐ethanolato; 3 ), and [CeIV6CeIII2MnIII2(μ4‐O)4(μ3‐O)4(tbdea)2(O2CtBu)12(NO3)2(OAc)2]?4 CH2Cl2 (tbdea2?=2,2′‐(tert‐butylimino]bis[ethanolato]; 4 ) all contain structures based on an octahedral {CeIV6(μ3‐O)8} core, in which many of the O‐atoms are either protonated to give (μ3‐OH)? hydroxo ligands or coordinate to further metal centers (MnIII or CeIII) to give interstitial (μ4‐O)2? oxo bridges. The decanuclear complex [CeIV8CeIIIMnIII(μ4‐O)3(μ3‐O)3(μ3‐OH)2(μ‐OH)(bdea)4(O2CtBu)9.5(NO3)3.5(OAc)2]?1.5 MeCN (bdea2?=2,2′‐(butylimino]bis[ethanolato]; 5 ) contains a rather compact CeIV7 core with the CeIII and MnIII centers well‐separated from each other on the periphery. The aggregate in [CeIV4MnIV2(μ3‐O)4(bdea)2(O2CtBu)10(NO3)2]?4 MeCN ( 6 ) is based on a quasi‐planar {MnIV2CeIV4(μ3‐O)4} core made up of four edge‐sharing {MnIVCeIV2(μ3‐O)} or {CeIV3(μ3‐O)} triangles. The structure of [CeIV3MnIV4MnIII(μ4‐O)2(μ3‐O)7(O2CtBu)12(NO3)(furan)]?6 H2O ( 7 ?6 H2O) can be considered as {MnIV2CeIV2O4} and distorted {MnIV2MnIIICeIVO4} cubane units linked through a central (μ4‐O) bridge. The Ce6Mn8 equals the highest nuclearity yet reported for a heterometallic Ce/Mn aggregate. In contrast to most of the previously reported heterometallic Ce/Mn systems, which contain only CeIV and either MnIV or MnIII, some of the aggregates presented here show mixed valency, either MnIV/MnIII (see 7 ) or CeIV/CeIII (see 4 and 5 ). Interestingly, some of the compounds, including the heterovalent CeIV/CeIII 4 , could be obtained from either CeIII(NO3)3?6 H2O or (NH4)2[CeIV(NO3)6] as starting material.  相似文献   

11.
The reaction of MnII chloride with imino nitroxide radical, 2-(2-hydroxy-5-nitrophenyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-1-oxyl (HL2), affords the MnIII complex [MnL2 2L3]·Me2CO, a distinctive feature of which is the simultaneous presence in the ligand shell of both the initial imino nitroxide and the product of its reduction 2-(2-hydroxy-5-nitrophenyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide (HL3). The reaction involves the oxidation of MnII to MnIII and the reduction of the imino nitroxide radical to the corresponding amidine oxide along with a change in the coordination mode of the heterocyclic ligand on going from L2 to L3. The MnIII ion forms with L2 six-membered metallocycles typical of Schiff bases, whereas with L3 MnIII forms a seven-membered metallocycle due to the coordination of L3 by oxygen atoms of the phenol and N-oxide It was found in a similar reaction of NiII chloride with imino nitroxide HL2 that no oxidation of the metal occurred and bis(chelate) [NiL2 2(H2O)2]·2Me2CO was formed in the solid phase. The molecular and crystal structures of the compounds were determined, and their magnetic properties were studied.  相似文献   

12.
Two tetranuclear manganese complexes, [NaMnIIMn3III4‐O2–)(HL)3(SCN)4] ( 1 ) and [NaMnIIMn3III4‐O2–)(HL)3Cl4][NaMnIIMn3III4‐O2–)(HL)3Cl3(H2O)]ClO4 · 3.5H2O ( 2 ) were obtained from the reaction of manganese perchlorate with a quadridentate Schiff base ligand, 3‐(2‐hydroxybenzylideneamino)propane‐1, 2‐diol (H3L) derived from condensation of 2‐hydroxybenzaldehyde with 3‐amino‐1, 2‐propanediol, as well as the coligand KSCN or NaCl under basic conditions. Single‐crystal X‐ray studies reveal that those two complexes all have a mixed‐valent tetrahedral core, which contains an apical MnII ion and three basal MnIII ions situated in the [Mn34‐O2–)]7+ equilateral triangle plane. Fitting of the magnetic susceptibility data to the theoretical χmT vs. T expression, revealed that the presence of only antiferromagnetic interactions between the central metal atoms in 1 , while both antiferromagnetic and ferromagnetic interactions are present in 2 .  相似文献   

13.
The synthesis, structural, and magnetic characterization of five new members of the hexanuclear oximate [MnIII6] family are reported. All five clusters can be described with the general formula [MnIII6O2(R-sao)6(R′-CO2)2(sol)x(H2O)y] (where R-saoH2 = salicylaldoxime substituted at the oxime carbon with R = H, Me and Et; R′ = 1-naphthalene, 2-naphthalene, and 1-pyrene; sol = MeOH, EtOH, or MeCN; x = 0–4 and y = 0–4). More specifically, the reaction of Mn(ClO4)2·6H2O with salicylaldoxime-like ligands and the appropriate carboxylic acid in alcoholic or MeCN solutions in the presence of base afforded complexes 15: [Mn6O2(Me-sao)6(1-naphth-CO2)2(H2O)(MeCN)]·4MeCN (1·4MeCN); [Mn6O2(Me-sao)6(2-naphth-CO2)2(H2O)(MeCN)]·3MeCN·0.1H2O (2·3MeCN·0.1H2O); [Mn6O2(Et-sao)6(2-naphth-CO2)2(EtOH)4(H2O)2] (3); [Mn6O2(Et-sao)6(2-naphth-CO2)2(MeOH)6] (4) and [Mn6O2(sao)6(1-pyrene-CO2)2(H2O)2(EtOH)2]·6EtOH (5·6EtOH). Clusters 3, 4, and 5 display the usual [Mn6/oximate] structural motif consisting of two [Mn3O] subunits bridged by two Ooximate atoms from two R-sao2? ligands to form the hexanuclear complex in which the two triangular [Mn3] units are parallel to each other. On the contrary, clusters 1 and 2 display a highly distorted stacking arrangement of the two [Mn3] subunits resulting in two converging planes, forming a novel motif in the [Mn6] family. Investigation of the magnetic properties for all complexes reveal dominant antiferromagnetic interactions for 1, 2, and 5, while 3 and 4 display dominant ferromagnetic interactions with a ground state of S = 12 for both clusters. Finally, 3 and 4 display single-molecule magnet behavior with Ueff = 63 and 36 K, respectively.  相似文献   

14.
The use of a convenient source of MnIII ions, namely the [Mn(OR)(O2CR′)2]n (R = H, Me, and R′ = Me, But) family of 1-D coordination polymers, afforded two new enneanuclear and decanuclear molecular clusters, homometallic [Mn9O7(O2CBut)13(MeCN)2] (3) and heterometallic [Mn10?xFex(OMe)20(O2CMe)10] (x < 10) (4), respectively. Compound 3 was synthesized by a solvent-induced structural transformation, whereas complex 4 resulted from the reaction of [Mn(OH)(O2CMe)2]n with an FeIII source. The core of 3 comprises two [Mn4O2]8+ butterfly units and a [Mn3O]7+ triangular unit fused together by sharing one Mn atom. Magnetic susceptibility measurements of 3 revealed dominant antiferromagnetic interactions within the molecule, and a ground state of S = 1 with many low-lying excited states. Complex 4 is a mixed FeIII/MnIII single-strand molecular wheel, which forms 3D nanotubular stacks arranged in a zig–zag fashion. The described work suggests that the [Mn(OR)(O2CR′)2]n compounds represent excellent starting materials for MnIII carboxylate cluster chemistry.  相似文献   

15.
The tape‐like chain {[(tptz)MnII(H2O)MnIII(CN)6]2MnII(H2O)2}n?4n MeOH?2n H2O based on the anisotropic building block hexacyanomanganate(III) exhibits long‐range magnetic ordering below 5.1 K as well as single‐chain magnetic behavior at lower temperatures with an effective energy barrier of 40.5(7) K.  相似文献   

16.
The synthesis, crystal structure, and magnetic properties of a [MnIII3MnII3‐O)(mbp)3(OAc)3] · 4H2O ( 1 ) [H2mbp = 2‐(1H‐benzimidazol‐2‐yl)‐2‐ methylpropane‐1,3‐diol] cluster are reported herein. Mn ions in compound 1 have a tetrahedron topology. Solid‐state direct current and alternating current magnetic susceptibility measurements on compound 1 reveal a ground state with ST = 7/2 as well as the probable single‐molecule magnetic behavior.  相似文献   

17.
Density functional theory (DFT) studies have been undertaken to compute the magnetic exchange and to probe the origin of the magnetic interactions in two hetero‐ and two homo‐valent heptanuclear manganese disc‐like clusters, of formula [MnII4MnIV3(tea)(teaH2)3(peolH)4] ( 1 ), [MnII4MnIII3F3(tea)(teaH)(teaH2)2(piv)4(Hpiv)(chp)3] ( 2 ), [MnII7(pppd)6(tea)(OH)3] ( 3 ) and [MnII7 (paa)6(OMe)6] ( 4 ) (teaH3=triethanolamine, peolH4=pentaerythritol, Hpiv=pivalic acid, Hchp=6‐chloro‐2‐hydroxypyridine, pppd=1‐phenyl‐3‐(2‐pyridyl) propane‐1,3‐dione; paaH=N‐(2‐pyridinyl)acetoacetamide). DFT calculations yield J values, which reproduce the magnetic susceptibility data very well for all four complexes; these studies are also highlighting the likely ageing/stability problems in two of the complexes. It is found that the spin ground states, S, for complexes 1 – 4 are drastically different, varying from S=29/2 to S=1/2. These values are found to be controlled by the nature of the oxidation state of the metal ions and minor differences present in the structures. Extensive magneto–structural correlations are developed for the seven building unit dimers present in the complexes, with the correlations unlocking the reasons behind the differences in the magnetic properties observed. Independent of the oxidation state of the metal ions, the Mn‐O‐Mn/Mn‐F‐Mn angles are found to be the key parameters, which significantly influence the sign as well as the magnitude of the J values. The magneto–structural correlations developed here, have broad applicability and can be utilised to understand the magnetic properties of other Mn clusters.  相似文献   

18.
The reaction of the potassium salts of N‐phosphorylated thioureas [4′‐benzo‐15‐crown‐5]NHC(S)NHP(Y)(OiPr)2 (Y = S, HLI ; Y = O, HLII ) with ZnII and CoII cations in aqueous EtOH leads to complexes of formulae Zn(LI,IIS,Y)2 (Y = S, 1 ; Y = O, 2 ) and Co(LIS,S′)2 ( 3 ), while interaction of the potassium salt of N‐phosphorylated thioamide [4′‐benzo‐15‐crown‐5]C(S)NHP(O)(OiPr)2 ( HLIII ) with ZnII in the same conditions leads to the complex Zn(HLIII)(LIIIS,O)2 ( 4 ). The reaction of the potassium salt of crown ether‐containing N‐phosphorylated bis‐thiourea N,N′‐[C(S)NHP(O)(OiPr)2]2‐1,10‐diaza‐18‐crown‐6 ( H2L ) with CoII, ZnII and PdII cations in anhydrous CH3OH leads to complexes M2(L‐O,S)2 (M = Co, 5 ; Zn, 6 ; M = Pd, 7 ). Thioamide HLIII was investigated by single‐crystal X‐ray diffraction.  相似文献   

19.
A series of six new Zn (II) compounds, viz., [Zn(HLASA)2(Py)2] ( 1 ), [Zn(HLMASA)2(Py)2] ( 2 ), [Zn(HLMASA)2(4‐MePy)2] ( 3 ), [Zn(HLCASA)2(4‐MePy)2] ( 4 ), [Zn(HLBASA)2(Py)2] ( 5 ), [Zn(HLBASA)2(4‐MePy)2] ( 6 ) and representative Cu (II) and Cd (II) complexes, viz., [Cu(HLASA)2(Py)2(H2O)] ( 7 ) and [Cd(HLBASA)2(Py)3] ( 8 ) [(HLXASA)? = para‐substituted 5‐[(E)‐2‐(aryl)‐1‐diazenyl]‐2‐hydroxybenzoate with X = H (ASA), Me (MASA), Cl (CASA) or Br (BASA); Py = pyridine; 4‐MePy = 4‐methylpyridine] have been synthesized and characterized by spectroscopic techniques and single‐crystal X‐ray diffraction analysis. The structural characterization of the compounds revealed distorted tetrahedral ( 1 – 6 ), square‐pyramidal ( 7 ) and pentagonal‐bipyramidal ( 8 ) coordination geometries around the metal atom, in which the aryl‐substituted diazosalicylate ligands are coordinated only through the oxygen atoms of carboxylate groups, either in an anisobidentate or isobidentate mode; meanwhile, the 2‐hydroxy groups of the monoanionic ligand (HLXASA)? are involved only in intramolecular O‐H···O hydrogen bonds with the carboxylate function. In the crystal structures of 1 – 8 , the complex molecules are assembled by π‐stacking interactions giving mostly infinite 1D strands. The intermolecular binding in the solid state structures is accomplished by diverse additional non‐covalent contacts including C‐H···O, C‐H···N, C‐H···π, C‐H···Br, O···Br, Br···π and van der Waals contacts. Although the primary and secondary ligands in the Zn (II) complex series 1 – 6 carry different substituents at the periphery (X = H, Me, Cl, Br for (HLXASA)? and R = H, Me for 4‐Py‐R), five of the crystal structures were isostructural. Additionally, the antimicrobial activity of the pro‐ligands H2LXASA and their Zn (II), Cu (II) and Cd (II) compounds were studied in a comparative manner, showing high sensitivity (IZD ≥ 20) against Bacillus subtilis.  相似文献   

20.
Two tetranuclear manganese complexes, [Mn4(L1)6](ClO4)2?2.75H2O (1) [HL1 = 4-methyl-2-((pyridin-2-ylmethylene)amino)phenol] and [Mn4(L2)4(NO3)3(OH)]?pz?3H2O (2) [HL2 = (1H-pyrazol-1-yl)(pyridin-2-yl)methanol, pz = pyrazole], have been synthesized and characterized by IR spectroscopy, elemental analysis, single-crystal X-ray diffraction, and magnetic measurements. The structural analysis revealed that the central manganese ion is linked with three apical manganese ions through six phenoxo-bridges creating a Mn4O6 core for 1; 2 has a cubane-like topology with the Mn(II) ions and the deprotonated oxygens from L2 alternatively occupying vertices. The magnetic studies indicated a weak ferromagnetic coupling interaction (J = 0.48 ± 0.087 cm?1, g = 2.00, θ = ?0.78 K) for 1 and a weak antiferromagnetic spin-exchange interaction (J1 = ?0.50 ± 0.075 cm?1, J2 = ?0.13 ± 0.082 cm?1, g = 1.98) between Mn(II) ions for 2. The magnetostructural correlations of the two Mn4 clusters have been discussed tentatively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号