首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
阎凯  宁智  吕明 《计算力学学报》2012,29(6):893-900
利用线性稳定性理论进行了射流液体粘性对圆环旋转液膜射流稳定性影响的研究,推导出了三维扰动下具有固体旋涡型速度分布的圆环旋转粘性液膜射流的色散方程;在此基础上进行了类反对称模式与类对称模式下的圆环旋转粘性液膜射流的三维不稳定性分析。研究结果表明,在类反对称模式下,液体粘性超过一定值后,射流最大扰动增长率随液体粘性的增加而迅速减小;轴对称模态的射流特征频率产生一个突降变化;随液体粘性增加,轴对称模态不稳定波数范围减小,非轴对称模态不稳定波数范围呈现出先减小后增大趋势。在类对称模式下,液体粘性对射流最大扰动增长率的影响主要体现在对非轴对称模态的影响上;液体粘性只在粘性较大时才会对非轴对称模态射流特征频率产生一定影响;液体粘性超过一定值后,轴对称模态与非轴对称模态的不稳定波数范围都会快速下降。  相似文献   

2.
阎凯  宁智  吕明  孙春华  付娟  李元绪 《力学学报》2016,48(3):566-575
压力旋流喷嘴被广泛应用于航空发动机、船用发动机、车用汽油缸内直喷发动机、燃气轮机等动力机械的燃油喷射系统中.以压力旋流喷嘴射流为研究对象,开展了圆环旋转黏性液体射流破碎液滴粒径与速度数量密度分布相关性问题研究.对于液体射流,以往的研究往往对破碎液滴粒径数量密度分布或速度数量密度分布进行单独研究,对于这两种数量密度分布之间关系的研究较少;从相关性的角度对圆环旋转黏性液体射流破碎液滴粒径与速度数量密度分布之间的关系进行研究.采用最大熵原理方法建立了圆环旋转黏性液体射流破碎液滴粒径与速度联合概率密度函数.对圆环旋转黏性液体射流破碎液滴粒径与速度联合概率密度函数进行了讨论,对圆环旋转黏性液体射流破碎液滴粒径数量密度分布与速度数量密度分布的相关性问题进行了研究.研究结果表明,为了给出正确的圆环旋转黏性液体射流破碎液滴粒径与速度联合概率密度函数,射流守恒约束条件中必须同时包括质量守恒定律、动量守恒定律以及能量守恒定律;破碎液滴粒径的数量密度分布与速度数量密度分布密切相关;射流旋转强度对破碎液滴粒径数量密度与速度数量密度分布结构影响不大,对破碎液滴粒径数量密度和速度数量密度的分布区域影响较大.   相似文献   

3.
Rayleigh-Taylor不稳定性存在于爆炸、液滴形成和液体喷雾等工程应用过程中,是流体力学关注的经典问题之一.内空泡振荡诱导液滴界面演化问题是其研究中基本模型之一,空泡振荡作用下液滴界面发生扰动并发展,其特征形态主要表现为破碎、通气和稳定.液体黏性是影响界面不稳定性发展的重要因素,文章通过建立高精度的数值模拟方法,开展液体黏性对内空泡诱导柱状液滴界面不稳定性的影响研究.在数值模拟中,基于开源OpenFOAM框架的多相可压缩求解器直接求解Navier-Stokes方程,采用isoAdvector的几何流体体积法捕捉界面演化特征.结果表明,液体黏性的增加会减缓空泡的收缩,进而减缓液滴界面扰动的发展,该影响下通气工况液滴通气发生时间增加,而稳定工况最大扰动幅值减小.最大扰动幅值的减小直接影响了液滴的特征形态,基于一系列数值模拟结果归纳得到液滴不稳定性相图.在文章讨论的参数范围内,随着黏性增加,小液滴(Rd0 <2 mm)的形态从破碎转变为通气进而变成稳定;中液滴(2 mm d0 <3 mm)的形态从通气转变为稳定,不出现...  相似文献   

4.
高速滚动轴承内圈和保持架等旋转运动件表面润滑油膜的流动铺展以及破碎为油带和油矢的特性决定着轴承的润滑与冷却状态.在获得轴承旋转运动件拓扑结构—旋转圆盘表面油膜稳态流动特性的基础上,利用力学平衡和液体表面波不稳定破碎理论,建立表面油膜破碎转捩为油带和油矢的临界特性分析模型,分析和探讨了表面油膜的稳态流动特性以及供油量和润滑油物理特征参数对油膜破碎转捩临界特性的影响.结果表明:表面油膜沿着圆盘径向逐渐变薄,因与圆盘表面存在滑移现象,其流动速度也随之减小;表面油膜破碎的临界波数和临界半径随着圆盘转速的增高而增大,临界厚度则随之减小;表面油膜破碎的临界半径和临界厚度随着润滑油供油量的增加而增大;增大润滑油密度,将延缓表面油膜破碎,破碎临界半径增大,临界厚度减小;增大润滑油的黏度和表面张力系数将促进表面油膜破碎,破碎临界半径减小.与相关的试验结果对比验证了理论分析方法的正确性和可靠性.  相似文献   

5.
吕明  宁智  阎凯 《力学学报》2018,50(3):561-569
液体射流热稳定性研究是对射流稳定性问题的更深层次的探讨,可以进一步加深对液体射流分裂与雾化机理的认识,具有重要的学术意义和工程应用价值. 基于射流稳定性理论,在同时考虑射流周围气体旋转、射流和周围气体可压缩性以及射流液体中含空化气泡的条件下,建立了描述可压缩旋转气体中超空化射流热稳定性的数学模型,并对数学模型及其求解方法进行了验证分析;在此基础上,分析了液体射流表面与周围气体间温差及射流内部温度梯度同时作用下对射流稳定性的影响;并进一步探讨了超空化射流的热稳定性. 结果表明,射流表面扰动波的最大扰动增长率、最不稳定频率以及最大扰动波数皆随气液温差的增大呈近似线性增大趋势;射流内部温度梯度的存在使得气液温差对射流的失稳作用更加显著;射流内部温度梯度会抑制超空化对射流稳定性的影响,但气液温差会在一定程度上促进超空化对射流的失稳作用.   相似文献   

6.
液体射流热稳定性研究是对射流稳定性问题的更深层次的探讨,可以进一步加深对液体射流分裂与雾化机理的认识,具有重要的学术意义和工程应用价值.基于射流稳定性理论,在同时考虑射流周围气体旋转、射流和周围气体可压缩性以及射流液体中含空化气泡的条件下,建立了描述可压缩旋转气体中超空化射流热稳定性的数学模型,并对数学模型及其求解方法进行了验证分析;在此基础上,分析了液体射流表面与周围气体间温差及射流内部温度梯度同时作用下对射流稳定性的影响;并进一步探讨了超空化射流的热稳定性.结果表明,射流表面扰动波的最大扰动增长率、最不稳定频率以及最大扰动波数皆随气液温差的增大呈近似线性增大趋势;射流内部温度梯度的存在使得气液温差对射流的失稳作用更加显著;射流内部温度梯度会抑制超空化对射流稳定性的影响,但气液温差会在一定程度上促进超空化对射流的失稳作用.  相似文献   

7.
基于线性稳定性理论,建立了描述同轴旋转可压缩流动中超空化条件下液体射流稳定性的数学模型,并对数学模型及其求解方法进行了验证;在此基础上,对模型中考虑的射流及气体可压缩性、气体同轴旋转以及超空化等因素对射流稳定性的影响进行了分析. 分析结果表明,模型中考虑射流及气体的可压缩性后,与不考虑可压缩性相比,计算得到的射流稳定性明显变差,最小液滴直径减小,分裂液滴直径变化范围变宽,且小液滴数量增多. 气体的同轴旋转在轴对称与非轴对称扰动下对射流稳定性的影响完全相反;轴对称扰动时,气体旋转使射流稳定性增强,而非轴对称扰动时则正好相反;气体旋转有可能导致影响射流稳定性的扰动模式发生根本性变化. 超空化使射流稳定性变差;超空化程度较弱时,超空化使分裂液滴最小直径减小,分裂液滴直径变化范围增大;而超空化达到一定程度后,进一步提高超空化程度,分裂液滴最小直径几乎保持不变.  相似文献   

8.
基于固体弹性介质中的行波理论,对旋转圆环的固有频率进行了计算.以扩张弯曲梁微元体的运动方程为基础,分析了运动条件下该波导中行波的色散关系.通过分离正行波数和负行波数,解决了行波法计算旋转圆环的固有频率问题.同时给出了波数分离的判断依据,并结合简谐波动的相位封闭原理和传递矩阵建立了旋转圆环的特征方程.数值模拟研究了旋转体...  相似文献   

9.
郭立梅  吕明  宁智 《力学学报》2022,54(2):405-413
针对同轴气流式液体射流分裂液滴粒径预测模型缺乏的现状,结合射流线性稳定性理论,建立了基于临界模数的同轴气流式黏性液体射流分裂液滴粒径表达式,在此基础上,分别研究了气流旋拧(气流同时存在轴向和周向运动)及流体物性(气体可压缩性、液体黏性、气液密度比和表面张力)对液滴粒径的影响规律.研究发现:周围气流轴向引射作用和同轴旋转...  相似文献   

10.
为探究液滴黏性对变形过程的影响,深入了解液滴在冲击波作用下变形破碎的行为机制。采用高速阴影技术在水平激波管上拍摄了高韦伯数(We=1 100~4 400)条件下,3种黏性硅油液滴的变形过程。结果表明随着黏性的提升:液滴演化出相应特征所需时间增大,同时会出现新的变形特征;液滴空间及位移特征参数的生长速率降低而变形时间、最大变形高度/位移都增大,这是因为提升的黏性力降低了变形速率、耗散了更多的动能并延长了液滴的变形过程;液滴表面最不稳定的Kelvin-Helmholtz波朝着大尺度、低生长率的方向发展,从而实现黏性对变形过程的延缓作用。随着最大变形位移的增大,最大变形高度首先线性增长,之后增幅降低。  相似文献   

11.
Nonlinear instability and breakup of an annular liquid sheet has been modeled in this paper. The liquid sheet is considered to move axially and is exposed to co-flowing inner and outer gas streams. Also, the effect of outer gas swirl on sheet breakup has been studied. In the developed model a perturbation expansion method has been used with the initial magnitude of the disturbance as the perturbation parameter. This is a comprehensive model in that other geometries of planar sheet and a coaxial jet can be obtained as limiting cases of very large inner radius and inner radius equal to zero, respectively. In this temporal analysis, the effect of liquid Weber number, initial disturbance amplitude, inner gas-to-liquid velocity ratio, outer gas-to-liquid velocity ratio and outer gas swirl strength on the breakup time is investigated. The model is validated by comparison with earlier analytical studies for the limiting case of a planar sheet as well as with experimental data of sheet breakup length available in literature. It is shown that the linear theory cannot predict breakup of an annular sheet and the developed nonlinear model is necessary to accurately determine the breakup length. In the limiting case of a coaxial jet, results show that gas swirl destabilizes the jet, makes helical modes dominant compared to the axisymmetric mode and decreases jet breakup length. These results contradict earlier linear analyses and agree with experimental observations. For an annular sheet, it is found that gas flow hastens the sheet breakup process and shorter breakup lengths are obtained by increasing the inner and the outer gas velocity. Axially moving inner gas stream is more effective in disintegrating the annular sheet compared to axially moving outer gas stream. When both gas streams are moving axially, the liquid sheet breakup is quicker compared to that with any one gas stream. In the absence of outer gas swirl, the axisymmetric mode is the dominant instability mode. However, when outer gas flow has a swirl component higher helical modes become dominant. With increasing outer gas swirl strength, the maximum disturbance growth rate increases and the most unstable circumferential wave number increases resulting in a highly asymmetric sheet breakup with shorter breakup lengths and thinner ligaments.  相似文献   

12.
The breakup mechanism and instability of a power law liquid jet are investigated in this study. The power law model is used to account for the non-Newtonian behavior of the liquid fluid. A new theoretical model is established to explain the breakup of a power law liquid jet with axisymmetric and asymmetric disturbances, which moves in a swirling gas. The corresponding dispersion relation is derived by a linear approximation, and it is applicable for both shear-thinning and shear-thickening liquid jets. Analysis results are calculated based on the temporal mode. The analysis includes the effects of the generalized Reynolds number, the Weber number, the power law exponent, and the air swirl strength on the breakup of the jet. Results show that the shear-thickening liquid jet is more unstable than its Newtonian and shear-thinning counterparts when the effect of the air swirl is taken into account. The axisymmetric mode can be the dominant mode on the power law jet breakup when the air swirl strength is strong enough, while the non-axisymmetric mode is the domination on the instability of the power liquid jet with a high We and a low Re n . It is also found that the air swirl is a stabilizing factor on the breakup of the power law liquid jet. Furthermore, the instability characteristics are different for different power law exponents. The amplitude of the power law liquid jet surface on the temporal mode is also discussed under different air swirl strengths.  相似文献   

13.
The spatial–temporal instability behavior of a viscous liquid sheet with temperature difference between the two surfaces was investigated theoretically. The practical situation motivating this investigation is liquid sheet heated by ambient gas, usually encountered in industrial heat transfer and liquid propellant rocket engines. The existing dispersion relation was used, to explore the spatial–temporal instability of viscous liquid sheets with a nonuniform temperature profile, by setting both the wave number and frequency complex. A parametric study was performed in both sinuous and varicose modes to test the influence of dimensionless numbers on the transition between absolute and convective instability of the flow. For a small value of liquid Weber number, or a great value of gas-to-liquid density ratio, the flow was found to be absolutely unstable. The absolute instability was enhanced by increasing the liquid viscosity. It was found that variation of the Marangoni number hardly influenced the absolute instability of the sinuous mode of oscillations; however it slightly affected the absolute instability in the varicose mode.  相似文献   

14.
In the present study, the spatial instability for a two‐dimensional viscous liquid sheet, which is thinning with time, has been analysed. The study includes the derivation of a spatial dispersion equation, numerical solutions for the growth rate of sinuous disturbances, and parameter sensitivity studies. For a given wave number, the growth rate of the disturbance is essentially a function of Weber number, Reynolds number, and gas/liquid density ratio. The analysis indicates that the cut‐off wave number of the disturbance becomes larger with an increase in Weber number or gas/liquid density ratio. Thus, the liquid sheet should produce finer drops. When the Reynolds number decreases, the higher viscosity has a greater damping effect on shorter waves than longer waves. This could explain that only large drops and ligaments were observed in past measurements for the disintegration of a very viscous sheet. The spatial instability results of the present study were also compared with the temporal theory. The importance of spatial analysis was found and demonstrated for the cases of low Weber numbers. The temporal theory underestimates growth rates when the Weber number is less than 100. The discrepancy between the two theories increases as the Weber number further decreases. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
The temporal instability behavior of a viscoelastic liquid jet in the wind-induced regime with axisymmetric and asymmetric disturbances moving in an inviscid gaseous environment is investigated theoretically. The corresponding dispersion relation between the wave growth rate and the wavenumber is derived. The linear instability analysis shows that viscoelastic liquid jets are more unstable than their Newtonian counterparts, and less unstable than their inviscid counterparts, for both axisymmetric and asymmetric disturbances, respectively. The instability behavior of viscoelastic jets is influenced by the interaction of liquid viscosity and elasticity, in which the viscosity tends to dampen the instability, whereas the elasticity results in an enhancement of instability. Relatively, the effect of the ratio of deformation retardation to stress relaxation time on the instability of viscoelastic jets is weak. It is found that the liquid Weber number is a key measure that controls the viscoelastic jet instability behavior. At small Weber number, the axisymmetric disturbance dominates the instability of viscoelastic jets, i.e., the growth rate of an axisymmetric disturbance exceeds that of asymmetric disturbances. When the Weber number increases, both the growth rate and the instability range of disturbances increase drastically. The asymptotic analysis shows that at large Weber number, more asymmetric disturbance modes become unstable, and the growth rate of each asymmetric disturbance mode approaches that of the axisymmetric disturbance. Therefore, the asymmetric disturbances are more dangerous than that of axisymmetric disturbances for a viscoelastic jet at large Weber numbers. Similar to the liquid Weber number, the ratio of gas to liquid density is another key measure that affects the viscoelastic jet instability behavior substantially.  相似文献   

16.
应用一种合理考虑湍流一旋流相互作用及湍流脉动各向异性的新的代数ReynoldS应力模型,对环形通道内的湍流旋流流动进行了数值模拟.研究了旋流数、进口轴向速度和内外半径比等参数对环形通道内湍流旋流流动的影响,以及由此产生的流场变化对强化环形通道内传热的作用.  相似文献   

17.
Numerical investigation of a perturbed swirling annular two-phase jet   总被引:1,自引:0,他引:1  
A swirling annular gas–liquid two-phase jet flow system has been investigated by solving the compressible, time-dependent, non-dimensional Navier–Stokes equations using highly accurate numerical methods. The mathematical formulation for the flow system is based on an Eulerian approach with mixed-fluid treatment while an adjusted volume of fluid method is utilised to account for the gas compressibility. Surface tension effects are captured by a continuum surface force model. Swirling motion is applied at the inlet while a small helical perturbation is also applied to initiate the instability. Three-dimensional spatial direct numerical simulation has been performed with parallelisation of the code based on domain decomposition. The results show that the flow is characterised by a geometrical recirculation zone adjacent to the nozzle exit and by a central recirculation zone further downstream. Swirl enhances the flow instability and vorticity and promotes liquid dispersion in the cross-streamwise directions. A dynamic precessing vortex core is developed demonstrating that the growth of such a vortex in annular configurations can be initiated even at low swirl numbers, in agreement with experimental findings. Analysis of the averaged results revealed the existence of a geometrical recirculation zone and a swirl induced central recirculation zone in the flow field.  相似文献   

18.
Large Eddy Simulation of Low Swirl Flames Under External Flow Excitations   总被引:2,自引:0,他引:2  
Low swirl flame characteristics under external flow excitations are numerically investigated using large eddy simulations with a dynamically thickened flame combustion model. A finite volume scheme on a Cartesian grid with a dynamic one equation eddy viscosity subgrid scale model is used for large eddy simulations. The excitations are imposed on inlet velocity profiles by a sinusoidal forcing function over a wide range of amplitudes and frequencies. Present investigation shows that although, the swirling motion of the low swirl flame is not intense enough to induce a recirculation zone in ensemble averaged results, external flow excitations increase the local swirl number upstream of the flame front. Such increase in the local swirl number is at maximum value when the low swirl flame is excited at the dominant frequency of the flow field, which in turn induces a vortex breakdown and hence a central recirculation zone. The strength and size of the time averaged recirculation zone depend on both the amplitude and frequency of the excitations. Moreover, phase-locked results indicate that external flow excitations induce local swirl fluctuations ahead of the flame front which alter the strength of the recirculation zone at different phase angles of the excitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号