首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
等几何分析中采用Nitsche法施加位移边界条件   总被引:1,自引:0,他引:1  
陈涛  莫蓉  万能  宫中伟 《力学学报》2012,(2):369-381
等几何分析使用NURBS基函数统一表示几何和分析模型,消除了传统有限元的网格离散误差,容易构造高阶连续的协调单元.对于结构分析,选择合适的几何参数可以得到光滑的应力解,避免了后置处理的应力磨平.但是由于NURBS基函数不具备插值性,难以直接施加位移边界条件.针对这一问题,提出一种基于Nitsche变分原理的边界位移条件"弱"处理方法,它具有一致稳定的弱形式,不增加自由度,方程组对称正定和不会产生病态矩阵等优点.同时给出方法的稳定性条件,并通过求解广义特征值问题计算稳定性系数.最后,数值算例表明Nitsche方法在h细化策略下能获得最优收敛率,其结果要明显优于在控制顶点处直接施加位移约束.  相似文献   

2.
The singular hybrid boundary node method (SHBNM) is proposed for solving three-dimensional problems in linear elasticity. The SHBNM represents a coupling between the hybrid displacement variational formulations and moving least squares (MLS) approximation. The main idea is to reduce the dimensionality of the former and keep the meshless advantage of the later. The rigid movement method was employed to solve the hyper-singular integrations. The 'boundary layer effect', which is the main drawback of the original Hybrid BNM, was overcome by an adaptive integration scheme. The source points of the fundamental solution were arranged directly on the boundary. Thus the uncertain scale factor taken in the regular hybrid boundary node method (RHBNM) can be avoided. Numerical examples for some 3D elastic problems were given to show the characteristics. The computation results obtained by the present method are in excellent agreement with the analytical solution. The parameters that influence the performance of this method were studied through the numerical examples.  相似文献   

3.
The integral-differential equations for three-dimensional planar interfacial cracks of arbitrary shape in transversely isotropic bimaterials were derived by virtue of the Somigliana identity and the fundamental solutions, in which the displacement discontinuities across the crack faces are the unknowns to be determined. The interface is parallel to both the planes of isotropy. The singular behaviors of displacement and stress near the crack border were analyzed and the stress singularity indexes were obtained by integral equation method. The stress intensity factors were expressed in terms of the displacement discontinuities. In the non-oscillatory case, the hyper-singular boundary integral-differential equations were reduced to hyper-singular boundary integral equations similar to those of homogeneously isotropic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号