首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
An analytical solution is presented for the rotation problem of a two-layer composite elastic cylinder under a plane strain assumption. The external cylinder has variable-thickness formulation, and is made of a heterogeneous orthotropic material. It contains a fiber-reinforced viscoelastic homogeneous isotropic solid core of uniform thickness. The thickness and elastic properties of the external cylinder are taken as power functions of the radial direction. By the boundary and continuity conditions, the radial displacement and stresses for the rotating composite cylinder are determined. The effective moduli and Illyushin’s approximation methods are used to obtain the viscoelastic solution to the problem. The effects of heterogeneity, thickness variation, constitutive, time parameters on the radial displacement, and stresses are investigated.  相似文献   

2.
Analytical solutions to rotating functionally graded hollow and solid long cylinders are developed. Young's modulus and material density of the cylinder are assumed to vary exponentially in the radial direction, and Poisson's ratio is assumed to be constant. A unified governing equation is derived from the equilibrium equations, compatibility equation, deformation theory of elasticity and the stress-strain relationship. The governing second-order differential equation is solved in terms of a hypergeometric function for the elastic deformation of rotating functionally graded cylinders. Dependence of stresses in the cylinder on the inhomogeneous parameters, geometry and boundary conditions is examined and discussed. The proposed solution is validated by comparing the results for rotating functionally graded hollow and solid cylinders with the results for rotating homogeneous isotropic cylinders. In addition, a viscoelastic solution to the rotating viscoelastic cylinder is presented, and dependence of stresses in hollow and solid cylinders on the time parameter is examined.  相似文献   

3.
In this paper, an exact solution to the governing equations of the bending of a variable-thickness inhomogeneous rectangular plate is presented. The procedure is applicable to variable-thickness inhomogeneous rectangular plates with two opposite edges simply supported. The remaining ones subjected to a combination of clamped, simply supported, and free boundary conditions and between these two edges the plate may have varying thickness. The procedure is valuable in view of the fact that tables of deflections and stresses cannot be presented for variable-thickness inhomogeneous orthotropic plates as for uniform-thickness homogeneous isotropic plates even for commonly encountered loads because the results depend on the inhomogeneity coefficient and the orthotropic material properties instead of a single flexural rigidity. Numerical results, useful for the validation or otherwise of approximate solutions, are tabulated. The influences of the degree of the inhomogeneity, aspect ratio, thickness parameter and degree of non-uniformity on the deflections and stresses are investigated. This paper is partially supported by the Deanship of Scientific Research at King AbdulAziz University (Grant no. 172/427).  相似文献   

4.
Some special problems for axisymmetric solids made of linearly elastic orthotropic micropolar material with central symmetry are dealt with. The first one is a hollow circular cylinder of unlimited length, subjected to internal and external uniform pressure. The second one is a hollow or solid circular cylinder of finite length, subjected to a relative rotation of the bases about its axis. In both cases, one of the axes of elastic symmetry is parallel to the cylinder axis; the other two are arbitrarily oriented in the plane of any cross-section of the solid. The elastic properties are invariant along the cylinder axis. It is shown that the two problems are governed by formally similar sets of ordinary differential equations in the kinematic fields (in-plane displacements and microrotations). In the general case, numerical solutions are derived. The solution for the cylinder subjected to radial pressure does not significantly differ from that obtained in classical elasticity, at least in terms of radial and hoop force stresses. In the case of a cylinder subjected to torsion the difference between the micropolar and the classical solutions is more pronounced. The torque induces twisting couple stresses about the cylinder axis of variable sign. Finally, size effects in terms of torsional inertia are pointed out.  相似文献   

5.
The purpose of this research is to investigate the effects of material inhomogeneity on the response of linearly elastic isotropic solid circular disks or cylinders, rotating at constant angular velocity about a central axis. The work is motivated by the recent research activity on functionally graded materials (FGMs), i.e., materials with spatially varying properties tailored to satisfy particular engineering applications. The analog of the classic problem for a homogeneous isotropic rotating solid disk or cylinder is considered. The special case of a body with Young"s modulus depending on the radial coordinate only, and with constant Poisson"s ratio, is examined. For the case when the Young"s modulus has a power-law dependence on the radial coordinate, explicit exact solutions are obtained. It is shown that the stress response of the inhomogeneous disk (or cylinder) is significantly different from that of the homogeneous body. For example, the maximum radial and hoop stresses do not, in general, occur at the center as in the case for the homogeneous material. Furthermore, for the case where the Young"s modulus increases with radial distance from the center, it is shown that radially symmetric solutions exist provided the rate of growth of the Young"s modulus is, at most, cubic in the radial variable. It is also shown for the general inhomogeneous isotropic case how the material inhomogeneity may be tailored so that the radial and hoop stress are identical throughout the disk. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
We find closed-form solutions for axisymmetric plane strain deformations of a functionally graded circular cylinder comprised of an isotropic and incompressible second-order elastic material with moduli varying only in the radial direction. Cylinder's inner and outer surfaces are loaded by hydrostatic pressures. These solutions are specialized to cases where only one of the two surfaces is loaded. It is found that for a linear through-the-thickness variation of the elastic moduli, the hoop stress for the first-order solution (or in a cylinder comprised of a linear elastic material) is a constant but that for the second-order solution varies through the thickness. The radial displacement, the radial stress and the hoop stress do not depend upon the second-order elastic constant but the hydrostatic pressure and hence the axial stress depends upon it. When the two elastic moduli vary as the radius raised to the power two or four, the radial and the hoop stresses in an infinite space with a pressurized cylindrical cavity equal the pressure in the cavity. For an affine variation of the elastic moduli, the hoop stress in an internally loaded cylinder made of a linear elastic isotropic and incompressible material at the point is the same as that in a homogeneous cylinder. Here Rin and Rou equal, respectively, the inner and the outer radius of the undeformed cylinder and R the radial coordinate of a point in the unstressed reference configuration.  相似文献   

7.
A theoretical method for analyzing the axisymmetric plane strain elastodynamic problem of a non-homogeneous orthotropic hollow cylinder is developed. Firstly, a new dependent variable is introduced to rewrite the governing equation, the boundary conditions and the initial conditions. Secondly, a special function is introduced to transform the inhomogeneous boundary conditions to homogeneous ones. By virtue of the orthogonal expansion technique, the equation with respect to the time variable is derived, of which the solution can be obtained. The displacement solution is finally obtained, which can be degenerated in a rather straightforward way into the solution for a homogeneous orthotropic hollow cylinder and isotropic solid cylinder as well as that for a non-homogeneous isotropic hollow cylinder. Using the present method, integral transform can be avoided and it can be used for hollow cylinders with arbitrary thickness and subjected to arbitrary dynamic loads. Numerical results are presented for a non-homogeneous orthotropic hollow cylinder subjected to dynamic internal pressure. The project supported by the National Natural Science Foundation of China (10172075 and 10002016)  相似文献   

8.
Decay rates in a bimaterial circular cylinder under axisymmetric torsion loading are considered via an eigen-expansion near the end of the cylinder. The decay rates depend on the shear modulus ratio of the materials and the radius ratio of inner and outer cylinders. Following the derivation of the traditional Saint-Venant end effect of an isotropic bimaterial cylinder, cases of anisotropic material (transversely isotropic material) and non-traditional Saint-Venant end effect (displacement prescribed on the side surface) are considered. This study sheds some light on the decay studies for other geometric configurations and the deformation modes of composite structures.  相似文献   

9.
Elastic analyses of heterogeneous hollow cylinders   总被引:3,自引:0,他引:3  
Two different kinds of heterogeneous elastic hollow cylinders are studied in the present paper. One is a multi-layered cylinder with different values in different layers for both elastic modulus and Poisson’s ratio. Another is an elastic hollow cylinder with continuously graded material properties. By introducing two recursive algorithms, the extrusion stresses between two neighbor layers in the multi-layered cylinder submitted to uniform pressures on the inner and outer surfaces can be simply determined. Then the exact solutions of the multi-layered structure can be found based on Lamé’s solution. For the hollow cylinder with continuously graded properties, the displacement method is used. Both Whittaker equation and hyper-geometric equation are derived and successfully solved, and then the exact solutions are found. The results obtained in the present paper are compared with the numerical solutions and good agreements are found. At the end of the present paper, some inherent properties of these two different kinds of heterogeneous elastic hollow cylinders are presented and discussed. The results obtained in the present paper are useful in the design and analysis for composites reinforced by unidirectional fiber layers.  相似文献   

10.
The transient thermal response of a thick orthotropic hollow cylinder with finite length is studied by a high order shell theory. The radial and axial displacements are assumed to have quadratic and cubic variations through the thickness, respectively. It is important that the radial stress is approximated by a cubic expansion satisfying the boundary conditions at the inner and outer surfaces, and the corresponding strain should be least-squares compatible with the strain derived from the strain-displacement relation. The equations of motion are derived from the integration of the equilibrium equations of stresses, which are solved by precise integration method (PIM). Numerical results are.obtained, and compared with FE simulations and dynamic thermo-elasticity solutions, which indicates that the high order shell theory is capable of predicting the transient thermal response of an orthotropic (or isotropic) thick hollow cylinder efficiently, and for the detonation tube of actual pulse detonation engines (PDE) heated continuously, the thermal stresses will become too large to be neglected, which are not like those in the one time experiments with very short time.  相似文献   

11.
 In this paper the radial deformation and the corresponding stresses in a non-homogeneous hollow elastic cylinder rotating about its axis with a constant angular velocity is investigated. The material of the cylinder is assumed to the non-homogeneous and cylindrically orthotropic. The system of fundamental equations is solved by means of a finite difference method and the numerical calculations are carried out for the temperature, the components of displacement and the components of stress with the time t and through the thickness of the cylinder. The results indicate that the effect of inhomogeneity is very pronounced. Received on 21 December 2000  相似文献   

12.
The rolling contact problem involving circular cylinders is at the heart of numerous industrial processes, and critical to any elastohydrodynamic lubrication analysis is an accurate knowledge of the associated contact pressure for the static dry problem. In a recent article [1] the authors have obtained new horizontal pressure distributions, both exact and approximate for various problems involving the symmetrical contact of circular elastic cylinders. In [1] it is assumed that only the circumferential horizontal displacement is prescribed in the contact region while the vertical circumferential displacement is left arbitrary and is assumed to take on whatever value is predicted by the deformation. The advantage of this assumption is that the problem reduces to a single singular integral equation which by transformations can be simplified to an integral equation involving the standard finite Hilbert transform. Here we consider the more general displacement boundary value problem within the contact region, and to be specific we examine the problem with zero vertical circumferential displacement and prescribed horizontal circumferential displacement. The solution of this problem involves two coupled singular integral equations for the horizontal and vertical pressure distributions. Basic equations and some approximate analytical solutions are obtained for symmetrical contact of circular elastic cylinders by both parallel plates and circular cylinders which are either rigid or elastic. Numerical results for the approximate analytical solutions are given for contact by rigid parallel plates and rigid circular cylinders.  相似文献   

13.
It has been known for some time that certain radial anisotropies in some linear elasticity problems can give rise to stress singularities which are absent in the corresponding isotropic problems. Recently related issues were examined by other authors in the context of plane strain axisymmetric deformations of a hollow circular cylindrically anisotropic linearly elastic cylinder under uniform external pressure, an anisotropic analog of the classic isotropic Lamé problem. In the isotropic case, as the external radius increases, the stresses rapidly approach those for a traction-free cavity in an infinite medium under remotely applied uniform compression. However, it has been shown that this does not occur when the cylinder is even slightly anisotropic. In this paper, we provide further elaboration on these issues. For the externally pressurized hollow cylinder (or disk), it is shown that for radially orthotropic materials, the maximum hoop stress occurs always on the inner boundary (as in the isotropic case) but that the stress concentration factor is infinite. For circumferentially orthotropic materials, if the tube is sufficiently thin, the maximum hoop stress always occurs on the inner boundary whereas for sufficiently thick tubes, the maximum hoop stress occurs at the outer boundary. For the case of an internally pressurized tube, the anisotropic problem does not give rise to such radical differences in stress behavior from the isotropic problem. Such differences do, however, arise in the problem of an anisotropic disk, in plane stress, rotating at a constant angular velocity about its center, as well as in the three-dimensional problem governing radially symmetric deformations of anisotropic externally pressurized hollow spheres. The anisotropies of concern here do arise in technological applications such as the processing of fiber composites as well as the casting of metals.  相似文献   

14.
The present investigation is concerned with the effect of rotation on an infinite circular cylinder subjected to certain boundary conditions.An analytical procedure for evaluation of thermal stresses,displacements,and temperature in rotating cylinder subjected to thermal load along the radius is presented.The dynamic thermal stresses in an infinite elastic cylinder of radius a due to a constant temperature applied to a variable portion of the curved surface while the rest of surface is maintained at zero temperature are discussed.Such situation can arise due to melting of insulating material deposited on the surface cylinder.A solution and numerical results are obtained for the stress components,displacement components,and temperature.The results obtained from the present semi-analytical method are in good agreement with those obtained by using the previously developed methods.  相似文献   

15.
In this study, the stress distribution in a nonhomogeneous anisotropic cylindrical body is investigated. Using equilibrium equations, Hooke’s law and strain–displacement relations, a system of equations is obtained in cylindrical coordinates in terms of stress potentials where elastic properties change in radial direction. Young’s and shear moduli are expressed as power functions of r and Poisson’s ratios are kept constant. Closed-form solutions for stress potentials and stress distribution are obtained for an axisymmetric, orthotropic cylinder. Results are checked with FE results. A pressurized thick walled cylinder example is studied in details. Stresses in radial, tangential and axial directions and Von Mises stresses are plotted for different powers of r.  相似文献   

16.
An analytical solution to the axisymmetric problem on the action of a distributed load on an isotropic half-space when the load is given by a function dependent on the radial coordinate is obtained. The surface of the half-space is elastically fixed outside the circular domain of load application, the shear stresses are absent along the entire boundary, and the stresses vanish at infinity. At the boundary and inside the elastic half-space, the solutions are represented by the formulas for the stress tensor components and for the displacement vector components.  相似文献   

17.
This paper is concerned with the linear theory of inhomogeneous and orthotropic elastic materials with voids. We study the problem of extension and bending of right cylinders when the constitutive coefficients are independent of the axial coordinate. First, the plane strain problem for inhomogeneous and orthotropic elastic materials with voids is investigated. Then, the solution of the problem of extension and bending is expressed in terms of solutions of three plane strain problems. The results are used to study the extension of a circular cylinder with a special kind of inhomogeneity. The influence of the material inhomogeneity on the axial strain is established.   相似文献   

18.
基于 L-S 广义热弹性理论, 针对实心圆柱体在外表面受均匀热冲击作用下的一维广义热弹性问题进行研究分析. 利用热冲击的瞬时特征, 借助于 Laplace 正、反变换技术及柱函数的渐近性质, 推导了热冲击作用周期内温度场、位移场和应力场的渐近表达式. 通过计算, 得到了热冲击条件下各物理场的分布规律以及延迟效应和耦合效应对热弹性响应的影响规律. 结果表明: 当考虑延迟效应和耦合效应时, 热扰动将以两组速度不同的波的形式向前传播, 延迟效应和耦合效应对各物理场的建立时间, 阶跃间隔和阶跃峰值均产生影响, 且延迟效应和耦合效应均在一定程度上削弱了热冲击的作用效果.   相似文献   

19.
This paper derives an exact solution for the non-uniform stress and displacement fields within a finite, transversely isotropic, and linear elastic cylinder under compression with a kind of radial constraint induced by friction between the end surfaces of the cylinder and the loading platens. The main feature of the present work is the introduction of a general solution form for Lekhnitskii’s stress function such that the governing equation and all end and curved boundary conditions of the cylinder are satisfied exactly. Two different solutions were obtained corresponding to the real or complex characteristic roots of the governing equation, depending on the combination of the elastic material constants. The solution by Watanabe [Watanabe, S., 1996. Elastic analysis of axi-symmetric finite cylinder constrained radial displacement on the loading end. Structural Engineering/Earthquake Engineering JSCE 13, 175s–185s] for isotropic cylinders under compression test can be recovered as a special case. Our numerical results show that both the non-uniform stress distribution and the difference between the apparent and the true Young’s moduli of the cylinder are very sensitive to the anisotropy of Young’s moduli, Poisson’s ratios and shear moduli. A more distinct bulging shape of the cylinder is expected when anisotropy in shear modulus is strong, the cylinder is relatively short, and the end constraint is large. The bulging shape, however, does not depend strongly on anisotropy of either Poisson’s ratio or Young’s modulus.  相似文献   

20.
The interaction between two circular cylinders was studied in the slow flow of a Bingham viscoplastic fluid in an infinite medium without any inertia effects. The configuration studied is that in which the flow direction is parallel to the centre line of the cylinders. Finite-element numerical simulations were used with an approximation by Papanastasiou's regularisation method. The case of high yield stress effect was particularly examined. The convergence of the solutions was examined in detail. Changes in the rigid zones, kinematics and stresses were determined in relation to the degree of interaction, which is a function of the distance between the cylinders and the effect of yield stress. The results compared with the case of a single cylinder show that yield stress reduces interaction effects. The transition between configurations with interacting cylinders and configuration with isolated cylinders was examined as a function of the effect of yield stress. Correlations were proposed for the drag coefficient and the stability criterion when the cylinders are interacting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号