首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Monitoring activities carried out since 1994 showed the presence of significant levels of vanadium in drinking waters delivered in a lot of Etnean towns. The highest vanadium concentration was found in ground waters collected in the drainage gallery Ciapparazzo located on the Northwestern flank of Mt. Etna in Bronte's area (Catania, Italy). This drainage gallery, with a flow rate of near 500 l s− 1, is an important water source for several towns of the Etnean province. On account of different toxicological behaviours of V(IV) and V(V), which are the only possible oxidation states in aqueous media, a research project was set up to evaluate the ratio between their concentrations before and after disinfection treatments (chlorination or UV irradiation). Data were acquired in the most representative sites of the drainage gallery and the distribution network to evaluate the effect of residence times and disinfection treatments on possible species interconversion. The average total concentration of vanadium was 165 μg l− 1. Speciation analyses performed by solid phase extraction of both species followed by furnace atomic absorption spectrometric determination of V(IV) eluates revealed that the latter was the predominant species (90-100%) in untreated waters. Moreover, among the two disinfecting treatments applied by the water supplier, only sodium hypochlorite altered the species ratio and determined an instant increase of near 20% in V(V) relative concentration. No significant effect was observed as residence time varied in the drainage gallery or in the distribution systems. Other physico-chemical and chemical parameters (i.e. pH, EH, water temperature, electrical conductance, dissolved oxygen as well as major and minor inorganic cations and anions) were determined in the collected water samples to evaluate if they are proper or not for interconversion of the two V species. Redox potential of the water was also correlated to the percentage of V(IV).  相似文献   

2.
Summary The behavior rhenium in surface seawater (0-30 m) was studied using the samples collected at three locations off the coast of Aomori Prefecture, Japan. The physico-chemical forms of Re in seawater from other locations were also studied to verify the Aomori findings. It was found that almost 100% of Re was in dissolved forms, mainly ReO4-, therefore, the Re concentration was constant from the surface to 30 m depth and ranged from 6.1-7.4 ng. kg-1. The Re concentration in the Sea of Japan side was slightly lower than those in the Pacific Ocean side. Possibly, low Re concentration was added by river waters from Japan and/or the Asian continent to the Sea of Japan side.  相似文献   

3.
Uptake of radiostrontium by sediments from two small streams was studied as a function of pH and composition of aqueous phase, of the concentration of strontium, of contact time, temperature and liquid-to-solid ratio (V/m), using laboratory model experiments. Between pH 5 and 12 the uptake increased with pH and shifted to higher pH values with increasing V/m ratio. Addition of cations suppressed the uptake in the order Na+<K+<Ca2+. Increase in strontium concentration had negligible effect up to 10–5–10–4 mol·dm–3 concentration due to high concentrations of dissolved and exchangeable strontium present in the systems. The V/m ratio had no influence on Kd in the range of V/m=20–446 cm3 · g–1 but Kd value for V/m=0.79 cm3 · g–1 was significantly lower. Two-step kinetics of the uptake was observed in most cases with a rapid first step (<100 min) followed by a slow increase. No difference was found between the uptake at 10°C and 22°C. Adsorbed radiostrontium could be easily desorbed with river water. The easiness of desorption decreased with repeated desorption. Drying of sediment did not affect the first desorption, repeated desorptions slightly decreased. Conclusions were drawn on the mechanism of radiostrontium uptake and on the importance of the factors studied for modelling of radiostrontium migration in rivers.  相似文献   

4.
Influences of exchangeable interlayer cations were investigated on self-standing film formability, film morphology, and properties of the clay films such as flexibility and gas barrier property. Ion-exchanged montmorillonite samples were prepared by a cation exchange from naturally bearing cation, mostly Na+, to Li+, Mg2+, Ca2+, Al3+, and Fe2+, 3+. Self-standing films were prepared from aqueous colloidal dispersions of these montmorillonite samples with no additives. The montmorillonite samples with monovalent or divalent cation formed flat self-standing films while the Al-montmorillonite sample produced a distorted film. The Fe-montmorillonite sample formed many separated reddish-brown rod-shaped pieces. Clay film microstructures were different with interlayer cations. The films with monovalent interlayer cations were constructed by the stacking of units with delicately waved thin clay sheets in the whole film, but other films show different morphologies between the upper side and lower side; the upper side is laminated with thin sheets; the lower side is laminated with large thick sheets.The self-standing films’ flexibility and gas barrier property differed according to the interlayer cations. These properties were good in cases of samples with monovalent cations. The innumerable short wave and sheet thinness are considered to foster good flexibility and gas barrier properties. The differences in film formability and properties of the films are attributable to different swellability among samples with different interlayer cations. The montmorillonite samples with monovalent cations swell sufficiently by water, but those with polyvalent cations swell poorly. In the latter case, clay crystals aggregate in water, then the aggregate grows into large particles, creating a film with large particles.  相似文献   

5.
The results of studies on the occurrence of aluminum, iron, and copper in water of Lyutsimir and Chernoe Bol’shoe Lakes belonging to the large group of Shatsk Lake system are discussed. Iron was shown to migrate mostly as suspended particles, and copper, as soluble species. The average annual fraction of suspended aluminum is about 40%. The ratio of suspended and dissolved aluminum depends not only on the concentration of suspended particles in water, but also on their nature. Anionic complexes predominate among soluble forms of the examined metals; their fractions in water of Lyutsimir and Chernoe Bol’shoe Lakes are on the average 86 and 70% (Al), 73 and 59% (Cu), and 60 and 47% (Fe). This is determined by the major contribution of humic substances to the total content of organic matter in water of both lakes and their participation in the complexation with metals. The metals compete for active centers in humic macroligands. Carbohydrates constitute the second important group of organic substances that participate in the complexation. Neutral complexes were found to consist mainly of iron compounds. Compounds with a molecular weight not exceeding 2.0 kDa predominate among anionic metal complexes.  相似文献   

6.
土壤腐殖质各组分红外光谱研究   总被引:14,自引:0,他引:14  
肖彦春  窦森 《分析化学》2007,35(11):1596-1600
土壤腐殖质是土壤中所特有的一类特殊的高分子化合物,具有重要的肥力和环境调节功能。其中胡敏素的提取和纯化很困难,从而限制了对其性质和结构的研究。为揭示胡敏素的结构性质,本研究按Pallo分组,将胡敏酸(HA)分为焦磷酸钠提取的胡敏酸(HAP)、氢氧化钠提取的胡敏酸(HAS);富里酸(FA)分为焦磷酸钠提取的富里酸(FAP)和氢氧化钠提取的富里酸(FAS);胡敏素(HM)分为铁结合胡敏素(HMi)、粘粒结合胡敏素(HMc)和不溶性胡敏素(HMr)三个组分,采用红外光谱法对黑土、草甸土以及黑土底土加入大量玉米秸秆培养后腐殖质各组分的结构特征进行研究。腐殖质各组分按Pallo法分组。结果表明:铁结合胡敏素(HMi)、粘粒结合胡敏素(HMc)与胡敏酸(HA)、富里酸(FA)具有相似的光谱特征,但存在明显差异。黑土、草甸土中HMi和HMc的脂族性强于HA和FA;HMi与HMc相比,HMi具有较高的脂族性。黑土中氢氧化钠提取的胡敏酸(HAS)的脂族性强于焦磷酸钠提取的胡敏酸(HAP);NaOH提取的富里酸(FAS)的脂族性强于Na4P2O7提取的富里酸(FAP)。草甸土中HAP的脂族结构较多,而HAS脂族结构相对较少。在培养土中,新形成的FA脂族性强于HA、HMi和HMc组分。新形成的HMc脂族性强于HMi和HMc的脂族性强于HAP,而弱于HAS。  相似文献   

7.
A novel and simple microprecipitation method was developed for the preconcentration of ultra-trace quantities of inorganic and methyl mercury species (iHg and MeHg) prior to their determination by cold vapour atomic absorption spectrometry (CVAAS). This method is based on the formation of anionic complexes of Hg2+ with KI followed by ion-associate complex with cetyltrimethyl ammonium bromide (CTAB) that forms a fluffy precipitate in perchloric acid medium. As a result, a fluffy coagulated mass separates and collects at the top of the liquid surface with clear phase separation without need of cooling or heating or centrifugation. The ion-association complex of iHg was then extracted into surfactant-rich phase (top layer) of CTAB-perchlorate precipitate while the uncomplexed MeHg remained in the aqueous phase (bottom layer). This condition also facilitates the removal of aqueous phase by simply draining out. The fluffy mass formed was dissolved in a mixture of HNO3 and HCl which was subsequently treated with chloroform to separate the surfactant from the mixture. Then the aqueous phase containing the preconcentrated iHg was analysed for mercury by CVAAS. Key factors such as sample pH, concentration of KI and CTAB that affect the performance of the proposed microprecipitation method were thoroughly investigated. For the determination of total mercury, another fresh aliquot of water was initially adjusted to pH ~ 3.5 with perchloric acid and subjected to oxidation by using modified UV-irradiation set-up and then taken through the microprecipitation procedure. This method allows speciation of mercury with a preconcentration factor of 200 and the limits of detection (LOD) of mercury obtained for CVAAS in conjunction with the present preconcentration method was found to be 2.4 ng L?1. Average recoveries obtained with the proposed approach were found to be in the range of 96–104% with RSD values < 5%. The interfering effects of various cations and anions were also investigated. The method was successfully applied for the determination of ultra-trace quantities of mercury species in real samples such as bottled water, tap water, lake water and ground waters.  相似文献   

8.
The prevalence of engineered metallic nanoparticles within electronic products has evoked a need to assess their occurrence and fate within environmental systems upon potential release of these nanoparticles. Quantum dots (QDs) are mixed-metal nanocrystals with the smallest of particle sizes (2–10 nm) that readily leach heavy metal cations in water, potentially creating a co-occurrence of nanoparticulate and dissolved metal pollutants. In this report, we develop a size exclusion chromatography–inductively coupled plasma–mass spectrometry method (SEC-ICP-MS) for the rapid separation and quantification of ~5-nm-sized CdSe/ZnS QDs and dissolved Cd2+ and Zn2+ cations in water. The SEC-ICP-MS method provided a wide chromatographic separation of CdSe/ZnS QDs and dissolved Cd2+ and Zn2+ cations only when using the smallest SEC column pore size available and an eluent composition that prevented loss of metals to column polymer surfaces by using a surfactant to ensure elution of QDs (ammonium lauryl sulfate) and a complexing ligand to ensure elution of metal cations (ethylenediaminetetraacetate). Detection limits were between 0.2 and 2 µg L1 for Cd2+ and Zn2+ among dissolved cation and QD phases, and ranges of linearity covered two to three orders of magnitude. Gold nanoparticles of sizes 5, 10, 20 and 50 nm were also effectively separated from dissolved Au3+ cations, illustrating the method applicability to a wide range of nanoparticle sizes and compositions. QD and dissolved metal concentrations measured by SEC-ICP-MS were comparable to those measured using the more conventional method of centrifuge ultrafiltration on split samples for dissolved and total metals. The applicability of the SEC-ICP-MS method to environmental systems was verified by measuring QDs and dissolved metals added to samples of natural waters. The method was also applied to monitoring CdSe/ZnS dissolution kinetics in an urban river water. The SEC-ICP-MS developed here may offer improved automation for characterising heterogeneous suspensions containing >1 µg L1 heavy metals.  相似文献   

9.
The adsorption of the monovalent anionic dye alizarinate onto Co-, Ni- and Cu-montmorillonite was carried out by adding the dye into aqueous clay suspensions. During the loading of the clay suspension by alizarinate, only some of the added organic anion is adsorbed by the clay forming d-coordination chelate complexes on the clay surface. Maximum adsorption of Co-, Ni- and Cu-clay were 13, 13 and 25 mmol dye per 100 g clay. Since the capacity of the clay for these transition metal cations is 38 mmol per 100 g clay, these saturations indicate that only part of the transition metal cations form positively charged d-coordination chelate complexes with metal:ligand ratio of 1. The complex cations can be located inside the interlayer spaces or on the broken bonds surfaces. Thermo-XRD-analysis and peptization studies of the solids and the clay water systems respectively were used here to identify the sorption sites. The Co and Ni complexes were obtained on the broken bonds surfaces whereas the Cu complexes were obtained in the interlayer space. Co2+, Ni2+ and Cu2+ were extracted from the clay into suspensions containing excess alizarinate.  相似文献   

10.
The mobility of hydration water and the dissolved oxygen permeability through different cation forms of the Nafion® membranes were determined. Two alkali metals (Na and K) and two amino sugars (an equivalent molar mixture of d-glucopyranosyl-α(1′  6)-2-amino-2-deoxy-d-mannitol and its sorbitol (GPA)and d-glucosamine (GLU)) were used as counterions. Based on the two-state model, the content and mobility of hydration water were determined using DSC and 17O NMR. The dissolved oxygen permeability through the Nafion® membrane containing GPA was the lowest value in this study because, for the membrane, the fraction of hydration water was the greatest and the mobility of hydration water was the lowest. The amount and location of the hydrophilic group contained in substances as well as the kind of hydrophilic group affected the fraction and mobility of hydration water and dissolved oxygen permeability through the membranes.  相似文献   

11.
The high-performance size-exclusion chromatography (HPSEC) and radiochromatography (HPSERC) was used for the identification of radiocesium and radiostrontium interaction with humic acid. It was found that the behavior of humic acid on size-exclusion chromatography is sensitive to the salt concentration and pH of the mobile phase. At lower ionic strength and in acidic region of pH, the Aldrich humic acid exhibited three main fraction within the ranges >760 kDa, 25–100 kDa and <5 kDa. Radiocesium was found in the low-molecular fractions (<1 kDa) of humic acids but radiostrontium interacts preferably with the fractions of humic acid of molecular weight within the range 2–5 kDa.  相似文献   

12.
The forms and quantities of iron species in corrosion product samples from natural gas pipelines were examined, using a continuous-flow sequential extraction system. Sequential extraction consists of four steps that dissolve water soluble iron (FeSO4), acid soluble iron (FeCO3), reducible iron (Fe-(oxyhydr)oxides) and oxidisable iron (FeS2) fractions, respectively. Selectivity of extracting reagents for particular iron species was evaluated by determination of co-extracted anions, using ion chromatography, and evolved CO2, using indirect flame atomic absorption spectrometer (FAAS). Iron was found predominantly in the reducible fraction (61–99%), indicating that Fe-(oxyhydr)oxides are the major constituents of the corrosion products.   相似文献   

13.
A simple spectrophotometric method has been developed for the quantification of dissolved sulfide based on its reaction with ferric iron and the subsequent reaction of ferrous iron with 1-nitroso-2-naphthol in alkaline medium. The insoluble iron(II)-ligand complex has been solubilized in micellar medium using neutral surfactant which facilitates the non extraction step. The method obeys Beer??s law in the concentration range 0.5?C8 ??g in 10 mL of aqueous phase. The complex showed an absorption maximum at 710 nm with ?? value of 4.11 × 104 L/mol cm. The detection limit has been found to be 0.0036 ??g/mL. The interference of common cations and anions has been studied and the proposed method has been successfully applied to determine the sulfide in different sewage water samples.  相似文献   

14.
Results obtained in studying the content and coexisting forms of titanium in surface waters are given. It was established that the titanium concentration lies within 0.0–1180 μg/L in the world’s surface water and within 0.0–573 μg/L in the studied water bodies of Ukraine. The concentration of dissolved and suspended titanium in the water bodies studied also varies within the wide range, 0.0–86.0 and 0.0–534.6 μg/L, respectively. The concentration of its dissolved form in world’s surface water is 0.0–68.7 μg/L. The ratio of dissolved to suspended titanium in water bodies depends on the content of suspended matter and its nature. In river waters, the suspended titanium mostly dominates over the dissolved form. We found that in rivers with the high concentration of suspended matter (6.0–140.6 mg/L), mostly of mineral nature, a fraction of the suspended titanium reaches 62.3–88.6% on the average. A strong correlation between the mass of suspended matter and the concentration of suspended titanium in these surface waters shows that the nature of suspended matter affects the concentration of suspended titanium. The correlation coefficient is between 0.81–0.99 at a significance level of 0.01. The titanium content in the suspended matter and bottom sediments of world’s water bodies makes 0.2–19.8 and 0.1–24.6 mg/g of dry weight of the suspended matter, respectively. In the surface waters studied, its content ranges within 0.0–16.5 mg/g of dry weight of the suspended matter. Taking into account the average values, the titanium content in the suspended matter of the studied rivers, water reservoirs, lakes, and ponds is (mg/g in terms of dry mass): 1.0–7.5, 1.0–4.9, 1.3–3.9, and 1.2–1.3, respectively. The percentage of the adsorbed titanium in the suspended matter of the Kilia Danube delta, Kanev Reservoir, and the Lybid’ River is 91.6–97.3, 67.6–74.4, and 57.1–99.4%, respectively. The acidic (anionic), basic (cationic), and neutral fractions of the dissolved organic substances in the surface waters contained 15.7–89.4, 0.0–33.8, and 0.0–80.7% of dissolved titanium (Tidiss) (i.e., 44.4, 13.2, and 42.4% of Tidiss on the average). The presence of dissolved titanium in the anionic fraction shows that titanium forms complexes with humic substances or exists in the form of TiO2 colloidal particles (nanoparticles) coated with humic substances. In the neutral fraction, a hydrated titanium oxide TiO(OH)2 may exist as a form of its migration in natural surface waters.  相似文献   

15.
Titania nanoparticles and gels are synthesized in reverse micelles with either an ionic (AOT) or a non-ionic (Triton X-100) surfactant in alkanes with low water contents. Acids were in some cases dissolved in the aqueous phase. Whereas the size of the sol nanoparticles is independent of the micellar composition, the kinetics of the sol-gel transition are not. The gelation time is shorter for the non-ionic surfactant and becomes longer as the acid content in the water increases, and for smaller anions of equal charge.  相似文献   

16.
A new type of silver composite electrode was examined, prepared from silver, graphite powder, and methacrylate resin. The effects of the presence of various cations (cadmium, copper, bismuth, thallium), anions (chlorides), surface-active substances (Triton X-100), and oxygen on the anodic-stripping voltammetric determination of lead were studied. It was found that the effect of underpotential deposition at the composite electrode differs from that produced at a metallic silver electrode, mainly at low concentrations of the deposited metal. The use of this type of silver composite electrode in differential pulse anodic-stripping voltammetry enables direct determination of lead in natural water samples without elimination of surface-active substances (LOD about 3 g L–1).  相似文献   

17.
The luminescence based bacterial sensor strains Pseudomonas fluorescens OS8 (pTPT11) for mercury detection and Pseudomonas fluorescens OS8 (pTPT31) for arsenite detection were used in testing their application in detecting heavy metals in soil extracts. Three different soil types (humus, mineral and clay) were spiked with 1, 100 or 500 μg g−1 Hg2+ or As3+. Samples were taken 1, 14 and 30 days and extracted with water, ammonium acetate, hydrogen peroxide and nitric acid to represent water soluble, bioavailable, organic matter bound and residual fractions, respectively. The lowest mercury-concentration measured using biosensor (0.003 μg kg−1) was considerably lower than by chemical method (0.05 μg kg−1). The sensor strain with pTPT31 appeared to have a useful detection range similar to that of chemical methods. Concentration results with chemical and biosensor analysis were very similar in the case of mercury-spiked samples. Although some of the arsenite samples showed higher variation between methods, it is concluded that the bacteria can be used as an alternative traditional methods for different types of samples.  相似文献   

18.
Mercury forms in contaminated environmental samples were studied by means of sequential extraction and thermal desorption from the solid phase. The sequential extraction procedure involved the following fractions: water soluble mercury, mercury extracted in acidic conditions, mercury bound to humic substances, elemental Hg and mercury bound to complexes, HgS, and residual mercury. In addition to sequential extraction, the distribution of mercury species as a function of soil particles size was studied. The thermal desorption method is based on the thermal decomposition or desorption of Hg compounds at different temperatures. The following four species were observed: Hg0, HgCl2, HgS and Hg(II) bound to humic acids. The Hg release curves from artificial soils and real samples were obtained and their applicability to the speciation analysis was considered.   相似文献   

19.
During this work, size fractionation technique “ultra filtration” is used in physical speciation of thorium in organic rich groundwater. Laboratory simulated experiments were carried out to study the physical speciation of thorium in aquatic environment having elevated level of dissolved humus material classified as dissolved organic carbon (DOC). Samples were collected from organic rich environment having DOC in the range of 50–60 µg mL?1. Th(IV) ions are extremely particle reactive having K d value of the order of 105–6, hence to avoid adsorption on suspended particulate matter, spiking of the solution with Th(NO3)4 was carried out in ground water samples after filtering through 450 nm pore size using suction filtration. Particles in dissolved state (colloids) ranging between <450 and >220 nm were separated using suction filtration assembly having a membrane with a pore diameter of 220 nm. Thereafter, solution was sequentially passed through the ultra-filtration membranes having pore diameters of 14 nm [300 k NMWL (nominal molecular weight limit)], 3.1 nm (50 k NMWL), 2.2 nm (30 k NMWL), 1.6 nm (10 k NMWL) and 1.1 nm (0.5 k NMWL) by using “Stirred Ultra-filtration Cells”, operating in concentration mode. Thorium has only one stable oxidation state i.e. IV, under all redox conditions in natural waters and therefore, its speciation is dominated by its interaction with various fractions of DOC. Experimental results show 50–60 % of the spiked Th is in association with fraction enriched with particles of 10 k NMWL (1.6 nm) followed by fraction enriched with particle of 0.5 k NMWL and <220 nm.  相似文献   

20.
The diffusive gradients in thin films (DGT) technique, using a diffusive gel or a restrictive gel, was evaluated for the determination of labile inorganic and organic species of Al and Cu in model synthetic solutions and river water samples. Experiments were performed both in situ and in the laboratory. In the solutions containing Al ions, the major labile fraction consisted of inorganic species. The organic complex fractions were mainly kinetically inert. For the model Cu solutions, the most labile fraction consisted of inorganic species; however, significant amounts of labile organic complexes of Cu were also present. A comparison was made between the results obtained using restrictive gel DGT and tangential flow ultrafiltration (TF-UF). The Cu fraction determined by restrictive gel DGT (corresponding to the "free" ions plus the labile fraction of small molecular size complexes) was larger than that determined by TF-UF (corresponding to all small molecular size ions), suggesting that the techniques exhibited different porosities for discrimination of inorganic species. For the river water samples analyzed in the laboratory, less than 45% of the analytes were present in labile forms, with most being organic species. For the in situ measurements, the labile inorganic and organic fractions were larger than those obtained in the laboratory analyses. These differences could have been due to errors incurred during sample collection and storage. All results were consistent with those found using two different methods, namely, solid-phase extraction and the DGT technique employing the apparent diffusion coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号