首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
An extracellular thermostable xylanase from a newly isolated thermophilic Actinomadura sp. strain Cpt20 was purified and characterized. Based on matrix-assisted laser desorption–ionization time-of-flight mass spectrometry analysis, the purified enzyme is a monomer with a molecular mass of 20,110.13 Da. The 19 residue N-terminal sequence of the enzyme showed 84% homology with those of actinomycete endoxylanases. The optimum pH and temperature values for xylanase activity were pH 10 and 80 °C, respectively. This xylanase was stable within a pH range of 5–10 and up to a temperature of 90 °C. It showed high thermostability at 60 °C for 5 days and half-life times at 90 °C and 100 °C were 2 and 1 h, respectively. The xylanase was specific for xylans, showing higher specific activity on soluble oat-spelt xylan followed by beechwood xylan. This enzyme obeyed the Michaelis–Menten kinetics, with the K m and k cat values being 1.55 mg soluble oat-spelt xylan/ml and 388 min−1, respectively. While the xylanase from Actinomadura sp. Cpt20 was activated by Mn2+, Ca2+, and Cu2+, it was, strongly inhibited by Hg2+, Zn2+, and Ba2+. These properties make this enzyme a potential candidate for future use in biotechnological applications particularly in the pulp and paper industry.  相似文献   

2.
A psychrotrophic fungus identified as Trichoderma sp. SC9 produced 36.7 U/ml of xylanase when grown on a medium containing corncob xylan at 20 °C for 6 days. The xylanase was purified 37-fold with a recovery yield of 8.2%. The purified xylanase appeared as a single protein band on SDS-PAGE with a molecular mass of approximately 20.5 kDa. The enzyme had an optimal pH of 6.0, and was stable over pH 3.5–9.0. The optimal temperature of the xylanase was 42.5 °C and it was stable up to 35 °C at pH 6.0 for 30 min. The xylanase was thermolabile with a half-life of 23.9 min at 45 °C. The apparent K m values of the xylanase for birchwood, beechwood, and oat-spelt xylans were found to be 3, 2.1, and 16 mg/ml respectively. The xylanase hydrolyzed beechwood xylan and birchwood xylan to yield mainly xylobiose as end products. The enzyme-hydrolysed xylotriose, xylotetraose, and xylopentose to produce xylobiose, but it hardly hydrolysed xylobiose. A xylanase gene (xynA) with an open reading frame of 669 nucleotide base pairs (bp), encoding 222 amino acids, from the strain was cloned and sequenced. The deduced amino acid sequence of XynA showed 85% homology with Xyn2 from a mesophilic strain of Trichoderma viride.  相似文献   

3.
Cupric ion-chelated poly(hydroxyethyl methacrylate-n-vinyl imidazole) (poly(HEMA-VIM)) microspheres prepared by suspension polymerization were investigated as a specific adsorbent for immobilization of yeast invertase in a batch system. They were characterized by scanning electron microscopy, surface area, and pore size measurements. They have spherical shape and porous structure. The specific surface area of the p(HEMA-VIM) spheres was found to be 81.2 m2/g with a size range of 70–120 μm in diameter, and the swelling ratio was 86.9%. Then, Cu(II) ion chelated on the microspheres (546 μmol Cu(II)/g), and they were used in the invertase adsorption. Maximum invertase adsorption was 51.2 mg/g at pH 4.5. Cu(II) chelation increases the tendency from Freundlich-type to Langmuir-type adsorption model. The optimum activity for both free and adsorbed invertase was observed at pH 4.5. The optimum temperature for the poly(HEMA-VIM)/Cu(II)-invertase system was found to be at 55 °C, 10 °C higher than that of the free enzyme at 45 °C. V max values were determined as 342 and 304 U/mg enzyme, for free and adsorbed invertase, respectively. K m values were found to be same for free and adsorbed invertase (20 mM). Thermal and pH stability and reusability of invertase increased with immobilization.  相似文献   

4.
An extracellular polygalacturonase (PG) produced from Paecilomyces variotii was purified to homogeneity through two chromatography steps using DEAE-Fractogel and Sephadex G-100. The molecular weight of P. variotii PG was 77,300 Da by gel filtration and SDS-PAGE. PG had isoelectric point of 4.37 and optimum pH 4.0. PG was very stable from pH 3.0 to 6.0. The extent of hydrolysis of different pectins by the purified enzyme was decreased with an increase in the degree of esterification. PG had no activity toward non-pectic polysaccharides. The apparent K m and V max values for hydrolyzing sodium polypectate were 1.84 mg/mL and 432 μmol/min/mg, respectively. PG was found to have temperature optimum at 65 °C and was totally stable at 45 °C for 90 min. Half-life at 55 °C was 50.6 min. Almost all the examined metal cations showed partial inhibitory effects under enzymatic activity, except for Na+1, K+1, and Co+2 (1 mM) and Cu+2 (1 and 10 mM).  相似文献   

5.
An exoinulinase has been isolated, purified and characterised from a commercially available broth of Aspergillus ficuum. The enzyme was purified 4.2-fold in a 21% yield with a specific activity of 12,300 U mg−1(protein) after dialysis, ammonium sulphate fractionation and Sephacryl S-200 size exclusion and ion exchange chromatography. The molecular weight of this enzyme was estimated to be 63 kDa by SDS-PAGE. It exhibited a pH and temperature optima of 5.4 and 50 °C respectively and under such conditions the enzyme remained stable with 96% and 63.8% residual activity after incubation for 12 h and 72 h respectively. The respective K m and V max values were 4.75 mM and 833.3 μmol min−1 ml−1, respectively. Response surface methodological statistical analysis was evaluated for the maximal production of fructose from the hydrolysis of pure commercial chicory inulin. Incubation of the dialyzed crude exoinulinase (100 U/ml, 48 h, 50 °C, 150% inulin, pH 5.0) produced the highest amount of fructose (106.4 mg/ml) under static batch conditions. The purified exoinulinase was evaluated for fructose production and the highest amount (98 mg/ml) was produced after 12 h incubation at 50 °C, 150% inulin pH 5.0. The use of a crude exoinulinase preparation is economically desirable and the industrial production of fructose from inulin hydrolysis is biotechnologically feasible.  相似文献   

6.
Chitinase was purified from the culture medium of Bacillus licheniformis SK-1 by colloidal chitin affinity adsorption followed by diethylamino ethanol-cellulose column chromatography. The purified enzyme showed a single band on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The molecular size and pI of chitinase 72 (Chi72) were 72 kDa and 4.62 (Chi72) kDa, respectively. The purified chitinase revealed two activity optima at pH 6 and 8 when colloidal chitin was used as substrate. The enzyme exhibited activity in broad temperature range, from 40 to 70°C, with optimum at 55°C. It was stable for 2 h at temperatures below 60°C and stable over a broad pH range of 4.0–9.0 for 24 h. The apparent K m and V max of Chi72 for colloidal chitin were 0.23 mg ml−1 and 7.03 U/mg, respectively. The chitinase activity was high on colloidal chitin, regenerated chitin, partially N-acetylated chitin, and chitosan. N-bromosuccinamide completely inhibited the enzyme activity. This enzyme should be a good candidate for applications in the recycling of chitin waste.  相似文献   

7.
Bacillus sp. HR-08 screened from soil samples of Iran, is capable of producing proteolytic enzymes. 16S rDNA analysis showed that this strain is closely related to Bacillus subtilis, Bacillus licheniformis, Bacillus pumilus, Bacillus mojavensis, and Bacillus atrophaeus. The zymogram analysis of the crude extract revealed the presence of five extracellular proteases. One of the proteases was purified in three steps procedure involving ammonium sulfate precipitation, DEAE-Sepharose ionic exchange and Sephacryl S-200 gel filtration chromatography. The molecular mass of the enzyme on SDS-PAGE was estimated to be 29 kDa. The protease exhibited maximum activity at pH 10.0 and 60 °C and was inhibited by PMSF but it was not affected by cysteine inhibitors, suggesting that the enzyme is a serine alkaline protease. Irreversible thermoinactivation of enzyme was examined at 50, 60, and 70 °C in the presence of 10 mM CaCl2. Results showed that the protease activity retains more than 80% and 50% of its initial activity after incubation for 30 min at 60 and 70 °C, respectively. This enzyme had good stability in the presence of H2O2, nonionic surfactant, and local detergents and its activity was enhanced in the presence of 20% of dimethyl sulfoxide (DMSO), dimethyl formamide (DMF) and isopropanol. The enzyme retained more than 90% of its initial activity after pre-incubation 1 h at room temperature in the presence of 20% of these solvents. Also, activation can be seen for the enzyme at high concentration (50%, v/v) of DMF and DMSO.  相似文献   

8.
A fungal isolate, identified as Penicillium citrinum S2, produced ≈1 U/mL of PHB depolymerase by 72 h when grown in BHM containing 0.2%, w/v PHB, pH 6.0 at 30 °C. Partial purification of an extracellular poly(-β-)hydroxybutyrate (PHB) depolymerase PhaZ Pen from P. citrinum S2 by two steps using ammonium sulphate (80% saturation) and affinity chromatography using concanavalin A yielded 16.18-fold purity and 21.53% recovery of protein. The enzyme was composed of three polypeptide chains of 66, 43 and 20 kDa, respectively, as determined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. All the three bands stained positive for glycoprotein by PAS staining. Optimum enzyme activity was detected at pH 6.0 and 50 °C. The enzyme was stable between pH 4.0 and 7.0 at 50 °C, 2 h. β-hydroxybutyrate monomer was detected as the major end product of PHB hydrolysis. The enzyme also showed distinct behaviour towards different inhibitors tested, which suggests the role of serine, serine residue, carboxyl group, tyrosine and sulfhydryl groups in its active site.  相似文献   

9.
A highly thermostable alkaline xylanase was purified to homogeneity from culture supernatant of Bacillus sp. JB 99 using DEAE-Sepharose and Sephadex G-100 gel filtration with 25.7-fold increase in activity and 43.5% recovery. The molecular weight of the purified xylanase was found to be 20 kDA by SDS-PAGE and zymogram analysis. The enzyme was optimally active at 70 °C, pH 8.0 and stable over pH range of 6.0–10.0.The relative activity at 9.0 and 10.0 were 90% and 85% of that of pH 8.0, respectively. The enzyme showed high thermal stability at 60 °C with 95% of its activity after 5 h. The K m and V max of enzyme for oat spelt xylan were 4.8 mg/ml and 218.6 μM min−1 mg−1, respectively. Analysis of N-terminal amino acid sequence revealed that the xylanase belongs to glycosyl hydrolase family 11 from thermoalkalophilic Bacillus sp. with basic pI. Substrate specificity showed a high activity on xylan-containing substrate and cellulase-free nature. The hydrolyzed product pattern of oat spelt xylan on thin-layer chromatography suggested xylanase as an endoxylanase. Due to these properties, xylanase from Bacillus sp. JB 99 was found to be highly compatible for paper and pulp industry.  相似文献   

10.
A new thermophilic bacterial strain identified as Bacillus cohnii US147 was isolated from the southern Tunisian soil. The identification was based on physiological tests and molecular techniques related to the 16S ribosomal ribonucleic acid. The isolated strain produced amylase, which was purified. This amylase had an apparent molecular mass of 30 kDa as estimated by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. Amylase US147 showed K m and V max values of 0.7 mg/ml and 2.2 U/ml, respectively, with starch as the substrate. The enzyme was active in acid and basic pH and had a maximal activity on starch at pH 9 and 70 °C. The enzyme was stable at pH 9 for 72 h and retained half of its activity after incubation at 70 °C for 150 min. A partially inhibition (15%, 25%, 23%, 20%, and 22%) was obtained with 1 mM SDS, 1 mM NaBO3, 1 mM H2O2, 1 mM Zn+2, and 5 mM ethylenediamine tetraacetic acid (EDTA), respectively. The amylase recovered its original activity by the addition of 10 mM Ca 2+ to the 5 mM EDTA. These properties indicated a possible use of this amylase in starch saccharification, in detergent, and in other industrial applications.  相似文献   

11.
Thermophilic xylose isomerase from the xerophytic eukaryote Opuntia vulgaris can serve as a good alternate source of enzyme for use in the production of high fructose corn syrup. The existence of two temperature stable isoforms having optimal activity at temperatures 70 °C (T70) and 90 °C (T90), respectively, is reported here. These isoforms were purified to homogeneity using column chromatography and SDS-polyacrylamide gel electrophoretic techniques. Only the T90 isoform was subjected to full biochemical characterization thereafter. The purified T90 isoform was capable of converting glucose to fructose with high efficiency under the assay conditions. The enzyme at pH 7.5 exhibited a preference to yield the forward isomerization reaction. The melting temperature of the native enzyme was determined to be 90 °C employing differential scanning colorimetery. Thermostability of the enzyme protein was established through temperature-related denaturation kinetic studies. It is suggested that the thermostability and the wide pH activity of this eukaryotic enzyme will make it an advantageous and dependable alternate source of catalytic activity for protected use in the high fructose corn syrup sweetener industry.  相似文献   

12.
The collagenase, produced extracellular by Bacillus pumilus Col-J, was purified by ammonium sulfate precipitation followed by two gel filtrations, involving Sephadex G-100 column and Sepharose Fast Flow column. Purified collagenase has a 31.53-fold increase in specific activity of 87.33 U/mg and 7.00% recovery. The collagenase has a relative molecular weight of 58.64 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The optimal temperature for the enzyme reaction was 45 °C. More than 50% of the original activity still remained after 5 min of incubation at 70 °C or 10 min at 60 °C. The maximal enzyme activity of collagenase was obtained at pH 7.5, and it was stable over a pH range of 6.5–8.0. The collagenase activity was strongly inhibited by Mn2+, Pb2+, ethylenediamine tetraacetic acid, ethylene glycol tetraacetic acid, and β-mercaptoethanol. However, Ca2+ and Mg2+ greatly increased its activity. The collagenase from B. pumilus Col-J showed highly specific activity towards the native collagen from calf skin. The K m and V max of the enzyme for collagen were 0.79 mg/mL and 129.5 U, respectively.  相似文献   

13.
Urease from pigeonpea (Cajanus cajan L.) was covalently linked to crab shell chitosan beads using glutaraldehyde. The optimum immobilization (64% activity) was observed at 4°C, with a protein concentration of 0.24 mg/bead and 3% glutaraldehyde. The immobilized enzyme stored in 0.05 M Trisacetate buffer, pH 7.3, at 4°C had a t 1/2 of 110 d. There was practically no leaching of enzyme (<3%) from the immobilized beads in 30 d. The immobilized urease was used 10 times at an interval of 24 h between each use with 80% residual activity at the end of the period. The chitosan-immobilized urease showed a significantly higher Michaelis constant (8.3 mM) compared to that of the soluble urease (3.0 mM). Its apparent optimum pH also shifted from 7.3 to 8.5. Immobilized urease showed an optimal temperature of 77°C, compared with 47°C for the soluble urease. Time-dependent kinetics of the thermal denaturation of immobilized urease was studied and found to be monophasic in nature compared to biphasic in nature for soluble enzyme. This immobilized urease was used to analyze blood urea of some of the clinical samples from the clinical pathology laboratories. The results compared favorably with those obtained by the various chemical/biochemical methods employed in the clinical pathology laboratories. A column packed with immobilized urease beads was also prepared in a syringe for the regular and continuous monitoring of serum urea concentrations.  相似文献   

14.
A bacterial strain isolated from spoiled coconut and identified as Bacillus cereus was found capable of producing alkaline thermostable extracellular lipase. Optimum temperature, time, and pH for enzyme substrate reaction were found to be 60 °C, 10 min, and 8.0 respectively. Common surfactants except Triton X 100 and cetyltrimethylammonium bromide have no or very little inhibitory effects on enzyme activity. The enzyme was found to be stable in presence of oxidizing agents and protease enzyme. The maximum lipase production was achieved at 30–33 °C, pH 8.0 on 24 h of fermentation using 50 ml medium in a 250-ml Erlenmeyer flask. The superior carbon and nitrogen sources for lipase production were starch (2%) and ammonium sulfate (nitrogen level 21.2 mg/100 ml), peptone (nitrogen level 297 mg/100 ml), and urea (nitrogen level 46.62 mg/100 ml) in combination, respectively. The maximum enzyme activity obtained was 33 ± 0.567 IU/ml.  相似文献   

15.
In this study, several nonionic surfactants were tried to improve the enzymatic hydrolysis of ginsenoside Rg3 into Rh2 which was catalyzed at 50 °C and pH 5.0 by a crude glucosidase extracted from Fusarium sp. ECU2042. Among the biocompatible nonionic surfactants, polyethylene glycol 350 monomethyl ether was shown to be the best. After optimizing some influencing factors on the reaction, the conversion of Rg3 (5 g/l) with 10 g/l crude enzyme reached almost 100% in the presence of the nonionic surfactant (7.5%, w/v), which was 25% higher than that in buffer without any surfactant. Furthermore, the enzyme stability was affected faintly by the surfactant.  相似文献   

16.
A phosphite dehydrogenase gene (ptdhK) consisting of 1,011-bp nucleotides which encoding a peptide of 336 amino acid residues was cloned from Pseudomonas sp. K. gene ptdhK was expressed in Escherichia coli BL21 (DE3) and the corresponding recombinant enzyme was purified by metal affinity chromatography. The recombinant protein is a homodimer with a monomeric molecular mass of 37.2 kDa. The specific activity of PTDH-K was 3.49 U mg−1 at 25 °C. The recombinant PTDH-K exhibited maximum activity at pH 3.0 and at 40 °C and displayed high stability within a wide range of pHs (5.0 to 10.5). PTDH-K had a high affinity to its natural substrates, with K m values for sodium phosphite and NAD of 0.475 ± 0.073 and 0.022 ± 0.007 mM, respectively. The activity of PTDH-K was enhanced by Na+, NH4+, Mg2+, Fe2+, Fe3+, Co2+, and EDTA, and PTDH-K exhibited different tolerance to various organic solvents.  相似文献   

17.
A gene-encoding alkaline phosphatase (AP) from thermophilic Geobacillus thermodenitrificans T2, termed Gtd AP, was cloned and sequenced. The deduced Gtd AP protein comprises 424 amino acids and shares a low homology with other known AP (<35% identity), while it exhibits the conservation of the active site and structure element of Escherichia coli AP. The Gtd AP protein, without a predicted signal peptide of 30 amino acids, was successfully overexpressed in E. coli and purified as a hexa-His-tagged fusion protein. The pH and temperature optima for purified enzyme are 9.0 and 65 °C, respectively. The enzyme retained a high activity at 45–60 °C, while it could be quickly inactivated by a heat treatment at 80 °C for 15 min, exhibiting a half-life of 8 min at 70 °C. The K m and V max for pNPP were determined to be 31.5 μM and 430 μM/min at optimal conditions. A divalent cation is essential, with a combination of Mg2+ and Co2+ or Zn2+ preferred. The enzyme was strongly inhibited by 10 mM ethylenediaminetetraacetic acid (EDTA) and vanadate but highly resistant to urea and dithiothreitol. The properties of Gtd AP make it suitable for application in molecular cloning or amplification.  相似文献   

18.
A recombinant esterase from Lactobacillus plantarum was immobilized on hydrophobic support polypropylene Accurel MP1000 by adsorption. Adsorption efficiency was 83%, and the immobilized protein was 12.4 mg/g of support. Esterase activity was determined using p-nitrophenyl butyrate as substrate, and highest activities were observed at 50 °C for immobilized enzyme and 30 °C for free enzyme extract. Concerning thermal stability, after enzyme incubation at 80 °C for 30 min, immobilized and free enzyme retained 91% and 56% of initial activity, respectively. Immobilized enzyme presented lower V max and higher K m than free enzyme. Protein was not released from the support, and esterase activity increased after 3 cycles of reuse.  相似文献   

19.
After screening with 0.1% esculoside and 0.03% FeCl3, we identified from rotten wood a fungal isolate HML0366 that produces high amount of β-glucosidase. Phenotypic and rDNA internal transcribed spacer sequence analyses indicated that the isolate belongs to Aspergillus oryzae. The β-glucosidase produced by HML0366 had an activity of 128 U/g. high performance liquid chromatography analysis also demonstrated a high transglycosylation activity of the crude enzyme. The β-glucosidase was stable between pH 4–10 at 60 °C. A gentiobiose yield of 30.86 g/L was achieved within 72 h of the enzymatic reaction at pH 5 and 55 °C using 50% glucose as the substrate. For the first time, we report here the isolation of an A. oryzae strain producing β-glucosidase with high hydrolytic activities. The crude enzyme has a high transglycosylation activity, which enables the enzymatic synthesis of gentiooligosaccharides.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号