共查询到20条相似文献,搜索用时 15 毫秒
1.
A micellar electrokinetic capillary chromatography (MECC) method has been developed for the determination of the four isoflavones, i.e. biochanin A, formononetin, genstein and daidzein in red clover (Trifolium Pratense L.). The effect of running buffer pH and concentration were investigated. An electrolyte composed of 30 mm borate, 20 mm sodium dodecyl sulfate (SDS) and 4 mg/mL HP-beta-CD containing 5% (v/v) ethanol at pH 10.1 provides a satisfactory separation for all the analytes. The applied voltage was 25 kV, and the capillary temperature was kept constant at 25 degrees C with a UV detection at 254 nm. The relative standard deviations (RSD) of the migration time and peak area were less than 1.73 and 3.94% (intra-day), and 2.29 and 4.38% (inter-day), respectively, under the optimized separation conditions. Regression equations revealed a good linear relationship between the peak area of each compound and its concentration. The contents of the four compounds in red clover were successfully determined with satisfactory repeatability and recovery. 相似文献
2.
Tapan Behl Amit Gupta Mohammed Albratty Asim Najmi Abdulkarim M. Meraya Hassan A. Alhazmi Md. Khalid Anwer Saurabh Bhatia Simona Gabriela Bungau 《Molecules (Basel, Switzerland)》2022,27(18)
The main characteristic feature of diabetes mellitus is the disturbance of carbohydrate, lipid, and protein metabolism, which results in insulin insufficiency and can also lead to insulin resistance. Both the acute and chronic diabetic cases are increasing at an exponential rate, which is also flagged by the World Health Organization (WHO) and the International Diabetes Federation (IDF). Treatment of diabetes mellitus with synthetic drugs often fails to provide desired results and limits its use to symptomatic treatment only. This has resulted in the exploration of alternative medicine, of which herbal treatment is gaining popularity these days. Owing to their safety benefits, treatment compliance, and ability to exhibit effects without disturbing internal homeostasis, research in the field of herbal and ayurvedic treatments has gained importance. Medicinal phytoconstituents include micronutrients, amino acids, proteins, mucilage, critical oils, triterpenoids, saponins, carotenoids, alkaloids, flavonoids, phenolic acids, tannins, and coumarins, which play a dynamic function in the prevention and treatment of diabetes mellitus. Alkaloids found in medicinal plants represent an intriguing potential for the inception of novel approaches to diabetes mellitus therapies. Thus, this review article highlights detailed information on alkaloidal phytoconstituents, which includes sources and structures of alkaloids along with the associated mechanism involved in the management of diabetes mellitus. From the available literature and data presented, it can be concluded that these compounds hold tremendous potential for use as monotherapies or in combination with current treatments, which can result in the development of better efficacy and safety profiles. 相似文献
3.
Aisha Musaazi Sebunya Nakitto John H. Muyonga Yusuf Byenkya Byaruhanga Anika E. Wagner 《Molecules (Basel, Switzerland)》2021,26(7)
Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder of glucose homeostasis associated with a status of insulin resistance, impaired insulin signaling, β-cell dysfunction, impaired glucose and lipid metabolism, sub-clinical inflammation, and increased oxidative stress. Consuming fruits and vegetables rich in phytochemicals with potential antidiabetic effects may prevent T2DM and/or support a conservative T2DM treatment while being safer and more affordable for people from low-income countries. Solanum anguivi Lam. fruits (SALF) have been suggested to exhibit antidiabetic properties, potentially due to the presence of various phytochemicals, including saponins, phenolics, alkaloids, ascorbic acid, and flavonoids. For the saponin fraction, antidiabetic effects have already been reported. However, it remains unclear whether this is also true for the other phytochemicals present in SALF. This review article covers information on glucose homeostasis, T2DM pathogenesis, and also the potential antidiabetic effects of phytochemicals present in SALF, including their potential mechanisms of action. 相似文献
4.
Rocio Edith Garcia-Jacobo Leticia Scussel Bergamin Valentina Vultaggio-Poma Maria Luiza Thorstenberg Mario Tarantini Mariana Haydee García-Hernndez Francesco Di Virgilio 《Molecules (Basel, Switzerland)》2022,27(6)
Adenosine triphosphate (ATP) is the key energy intermediate of cellular metabolic processes and a ubiquitous extracellular messenger. As an extracellular messenger, ATP acts at plasma membrane P2 receptors (P2Rs). The levels of extracellular ATP (eATP) are set by both passive and active release mechanisms and degradation processes. Under physiological conditions, eATP concentration is in the low nanomolar range but can rise to tens or even hundreds of micromoles/L at inflammatory sites. A dysregulated eATP homeostasis is a pathogenic factor in several chronic inflammatory diseases, including type 2 diabetes mellitus (T2DM). T2DM is characterized by peripheral insulin resistance and impairment of insulin production from pancreatic β-cells in a landscape of systemic inflammation. Although various hypoglycemic drugs are currently available, an effective treatment for T2DM and its complications is not available. However, counteracting systemic inflammation is anticipated to be beneficial. The postulated eATP increase in T2DM is understood to be a driver of inflammation via P2X7 receptor (P2X7R) activation and the release of inflammatory cytokines. Furthermore, P2X7R stimulation is thought to trigger apoptosis of pancreatic β-cells, thus further aggravating hyperglycemia. Targeting eATP and the P2X7R might be an appealing novel approach to T2DM therapy. 相似文献
5.
Thuy An Trinh Thai Minh Duy Le Hien Thi-Thanh Nguyen Thanh Loc Nguyen Jaeyun Kim Dai Phu Huynh Doo Sung Lee 《Macromolecular bioscience》2023,23(11):2300221
Type 2 Diabetes Mellitus (T2D) is a chronic, obesity-related, and inflammatory disorder characterize by insulin resistance, inadequate insulin secretion, hyperglycemia, and excessive glucagon secretion. Exendin-4 (EX), a clinically established antidiabetic medication that acts as a glucagon-like peptide-1 receptor agonist, is effective in lowering glucose levels and stimulating insulin secretion while significantly reducing hunger. However, the requirement for multiple daily injections due to EX's short half-life is a significant limitation in its clinical application, leading to high treatment costs and patient inconvenience. To address this issue, an injectable hydrogel system is developed that can provide sustained EX release at the injection site, reducing the need for daily injections. In this study, the electrospray technique is examine to form EX@CS nanospheres by electrostatic interaction between cationic chitosan (CS) and negatively charged EX. These nanospheres are uniformly dispersed in a pH-temperature responsive pentablock copolymer, which forms micelles and undergoes sol-to-gel transition at physiological conditions. Following injection, the hydrogel gradually degraded, exhibiting excellent biocompatibility. The EX@CS nanospheres are subsequently released, maintaining therapeutic levels for over 72 h compared to free EX solution. The findings demonstrate that the pH-temperature responsive hydrogel system containing EX@CS nanospheres can be a promising platform for the treatment of T2D. 相似文献
6.
Xuekun Wang Xu Li Shiting Wei Min Wang Yao Xu Weidi Hu Zhenzhen Gao Renmin Liu Shiben Wang Guoxia Ji 《Molecules (Basel, Switzerland)》2022,27(24)
Diabetes mellitus (DM), a chronic metabolic disorder characterized by high blood glucose, not only poses a serious threat to human life and health, but also places an economic burden on society. Currently available antidiabetic pharmacological agents have some adverse effects, which have stimulated researchers to explore novel antidiabetic agents with different mechanisms of action. G-protein Coupled Receptor 120 (GPR120), also known as free fatty acid receptor 4 (FFAR4), which is activated by medium-chain and long-chain fatty acids, has emerged as an interesting potential target for the treatment of metabolic disorders. Herein, we designed and synthesized a series of novel GPR120 agonists based on the structure of TUG-891, which is susceptible to β-oxidation and loses its GPR120 agonistic activity in vivo. Among the designed compounds, 14d showed excellent agonistic activity and selectivity and could improve glucose tolerance in normal mice in a dose-dependent manner. In addition, the compound 14d displayed good antidiabetic effects in diet-induced obese (DIO) mice and elevated insulin levels. Molecular simulations illustrated that compound 14d could enter the active site of GPR120 and interact with ARG99, which plays an important role in GPR120 activation. Based on these observations, compound 14d may be a promising lead compound deserving of further biological evaluation and structural modifications. 相似文献
7.
8.
2型糖尿病患者血清钙镁与甲状腺激素含量变化及临床意义 总被引:1,自引:0,他引:1
为了监测 2型糖尿病人血清钙、镁和甲状腺激素含量 ,分析其临床意义及相关性 ,应用放射免疫分析法测定了 1 1 5例 2型糖尿病及 1 5 0例健康人血清甲状腺激素含量。同时用美国杜邦RXL自动生化仪测定了其血清钙、镁含量。结果表明 ,在 2型糖尿病伴有明显并发症者血镁、FT3水平明显降低 (P <0 0 5 ) ,钙镁两种元素与甲状腺激素水平无明显相关性。 2型糖尿病患者适当补镁对预防其并发症是有益的 ,测定FT3 等可作为判断 2型糖尿病严重程度和估计预后的参考指标。 相似文献
9.
Nutrition is of utmost importance in chronic disease management and has often been described as the cornerstone of a variety of non-communicable diseases. In particular, type II diabetes mellitus (T2DM) represents a prevalent and global public health crisis. Lycopene, a bright red carotenoid hydrocarbon found in tomatoes and other red fruits and vegetables, has been extensively studied for its biological activities and treatment efficiency in diabetes care. Epidemiological investigations indicate that lycopene has potential antioxidant properties, is capable of scavenging reactive species, and alleviates oxidative stress in T2DM patients. This review aims to summarize the characteristics and mechanisms of action of lycopene as a potent antioxidant for T2DM. In addition, the evidence demonstrating the effects of lycopene on glycemic control and oxidative stress biomarkers in T2DM are also highlighted using animal and human studies as literature approach. 相似文献
10.
目的探讨磷酸西格列汀联合二甲双胍治疗新诊断2型糖尿.病的降糖效果及对胰岛功能的保护作用。方法将2015年12月—2016年12月在广州市增城区人民医院内分泌科治疗的66例新诊断2型糖尿病患者随机分为两组,对照组单服二甲双胍治疗,观察组采用磷酸西格列汀联合二甲双胍治疗,比较两组患者的血糖及胰岛素功能。结果观察组治疗后FPG、2h PG、Hb A1c明显较对照组改善,差异有统计学意义(P<0.05);观察组治疗后HOMA-β、HOMAIR、IAI、血清APN明显较对照组改善,差异有统计学意义(P<0.05)。结论磷酸西格列汀联合二甲双胍治疗新诊断2型糖尿病效果显著,有利于血糖的平稳控制,延缓胰岛功能恶化,保护胰岛β细胞功能,具有积极的临床意义。 相似文献
11.
Philippe M. Loiseau Kaluvu Balaraman Gillian Barratt Sbastien Pomel Rmy Durand Frdric Frzard Bruno Figadre 《Molecules (Basel, Switzerland)》2022,27(7)
There is a need for new, cost-effective drugs to treat leishmaniasis. A strategy based on traditional medicine practiced in Bolivia led to the discovery of the 2-substituted quinoline series as a source of molecules with antileishmanial activity and low toxicity. This review documents the development of the series from the first isolated natural compounds through several hundred synthetized molecules to an optimized compound exhibiting an in vitro IC50 value of 0.2 µM against Leishmania donovani, and a selectivity index value of 187, together with in vivo activity on the L. donovani/hamster model. Attempts to establish structure–activity relationships are described, as well as studies that have attempted to determine the mechanism of action. For the latter, it appears that molecules of this series act on multiple targets, possibly including the immune system, which could explain the observed lack of drug resistance after in vitro drug pressure. We also show how nanotechnology strategies could valorize these drugs through adapted formulations and how a mechanistic targeting approach could generate new compounds with increased activity. 相似文献
12.
Rebeka Torok Klaudia Horompoly Marton Szigeti Andras Guttman Marta Vitai Laszlo Koranyi Gabor Jarvas 《Molecules (Basel, Switzerland)》2021,26(21)
Currently, diagnosing type 2 diabetes (T2D) is a great challenge. Thus, there is a need to find rapid, simple, and reliable analytical methods that can detect the disease at an early stage. The aim of this work was to shed light on the importance of sample collection options, sample preparation conditions, and the applied capillary electrophoresis bioanalytical technique, for a high-resolution determination of the N-glycan profile in human blood samples of patients with type 2 diabetes (T2D). To achieve the profile information of these complex oligosaccharides, linked by asparagine to hIgG in the blood, the glycoproteins of the samples needed to be cleaved, labelled, and purified with sufficient yield and selectivity. The resulting samples were analyzed by capillary electrophoresis, with laser-induced fluorescence detection. After separation parameter optimization, the capillary electrophoresis technique was implemented for efficient N-glycan profiling of whole blood samples from the diabetic patients. Our results revealed that there were subtle differences between the N-glycan profiles of the diabetic and control samples; in particular, two N-glycan structures were identified as potential glycobiomarkers that could reveal significant changes between the untreated/treated type 2 diabetic and control samples. By analyzing the resulting oligosaccharide profiles, clinically relevant information was obtained, revealing the differences between the untreated and HMG-CoA reductase-inhibitor-treated diabetic patients on changes in the N-glycan profile in the blood. In addition, the information from specific IgG N-glycosylation profiles in T2D could shed light on underlying inflammatory pathophysiological processes and lead to drug targets. 相似文献
13.
Putri Hawa Syaifie Azza Hanif Harisna Mochammad Arfin Fardiansyah Nasution Adzani Gaisani Arda Dwi Wahyu Nugroho Muhammad Miftah Jauhar Etik Mardliyati Nurwenda Novan Maulana Nurul Taufiqu Rochman Alfian Noviyanto Antonio J. Banegas-Luna Horacio Prez-Snchez 《Molecules (Basel, Switzerland)》2022,27(13)
Propolis contains a wide range of pharmacological activities because of their various bioactive compounds. The beneficial effect of propolis is interesting for treating type-2 diabetes mellitus (T2DM) owing to dysregulation of multiple metabolic processes. In this study, 275 of 658 Asian propolis compounds were evaluated as potential anti-T2DM agents using the DIA-DB web server towards 18 known anti-diabetes protein targets. More than 20% of all compounds could bind to more than five diabetes targets with high binding affinity (<−9.0 kcal/mol). Filtering with physicochemical and pharmacokinetic properties, including ADMET parameters, 12 compounds were identified as potential anti-T2DM with favorable ADMET properties. Six of those compounds, (2R)-7,4′-dihydroxy-5-methoxy-8-methylflavone; (RR)-(+)-3′-senecioylkhellactone; 2′,4′,6′-trihydroxy chalcone; alpinetin; pinobanksin-3-O-butyrate; and pinocembrin-5-methyl ether were first reported as anti-T2DM agents. We identified the significant T2DM targets of Asian propolis, namely retinol-binding protein-4 (RBP4) and aldose reductase (AKR1B1) that have important roles in insulin sensitivity and diabetes complication, respectively. Molecular dynamic simulations showed stable interaction of selected propolis compounds in the active site of RBP4 and AKR1B1. These findings suggest that Asian propolis compound may be effective for treatment of T2DM by targeting RBP4 and AKR1B1. 相似文献
14.
Sabbir Ahmed Md Chayan Ali Rumana Akter Ruma Shafi Mahmud Gobindo Kumar Paul Md Abu Saleh Mohammed Merae Alshahrani Ahmad J. Obaidullah Sudhangshu Kumar Biswas Md Mafizur Rahman Md Mizanur Rahman Md Rezuanul Islam 《Molecules (Basel, Switzerland)》2022,27(14)
Piper betle L. is widely distributed and commonly used medicinally important herb. It can also be used as a medication for type 2 diabetes patients. In this study, compounds of P. betle were screened to investigate the inhibitory action of alpha-amylase and alpha-glucosidase against type 2 diabetes through molecular docking, molecular dynamics simulation, and ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis. The molecule apigenin-7-O-glucoside showed the highest binding affinity among 123 (one hundred twenty-three) tested compounds. This compound simultaneously bound with the two-target proteins alpha-amylase and alpha-glucosidase, with high molecular mechanics-generalized born surface area (MM/GBSA) values (ΔG Bind = −45.02 kcal mol−1 for alpha-amylase and −38.288 for alpha-glucosidase) compared with control inhibitor acarbose, which had binding affinities of −36.796 kcal mol−1 for alpha-amylase and −29.622 kcal mol−1 for alpha-glucosidase. The apigenin-7-O-glucoside was revealed to be the most stable molecule with the highest binding free energy through molecular dynamics simulation, indicating that it could compete with the inhibitors’ native ligand. Based on ADMET analysis, this phytochemical exhibited a wide range of physicochemical, pharmacokinetic, and drug-like qualities and had no significant side effects, making them prospective drug candidates for type 2 diabetes. Additional in vitro, in vivo, and clinical investigations are needed to determine the precise efficacy of drugs. 相似文献
15.
Ghulam Md. Ashraf Debarati DasGupta Mohammad Zubair Alam Saleh S. Baeesa Badrah S. Alghamdi Firoz Anwar Thamer M. A. Alqurashi Sharaf E. Sharaf Waleed Al Abdulmonem Mohammed A. Alyousef Fahad A. Alhumaydhi Anas Shamsi 《Molecules (Basel, Switzerland)》2022,27(14)
Microtubule affinity regulating kinase 4 (MARK4) regulates the mechanism of microtubules by its ability to phosphorylate the microtubule-associated proteins (MAP’s). MARK4 is known for its major role in tau phosphorylation via phosphorylating Ser262 residue in the KXGS motif, which results in the detachment of tau from microtubule. In lieu of this vital role in tau pathology, a hallmark of Alzheimer’s disease (AD), MARK4 is a druggable target to treat AD and other neurodegenerative disorders (NDs). There is growing evidence that NDs and diabetes are connected with many pieces of literature demonstrating a high risk of developing AD in diabetic patients. Metformin (Mtf) has been a drug in use against type 2 diabetes mellitus (T2DM) for a long time; however, recent studies have established its therapeutic effect in neurodegenerative diseases (NDs), namely AD, Parkinson’s disease (PD) and amnestic mild cognitive impairment. In this study, we have explored the MARK4 inhibitory potential of Mtf, employing in silico and in vitro approaches. Molecular docking demonstrated that Mtf binds to MARK4 with a significant affinity of −6.9 kcal/mol forming interactions with binding pocket’s critical residues. Additionally, molecular dynamics (MD) simulation provided an atomistic insight into the binding of Mtf with MARK4. ATPase assay of MARK4 in the presence of Mtf shows that it inhibits MARK4 with an IC50 = 7.05 µM. The results of the fluorescence binding assay demonstrated significant binding of MARK4 with a binding constant of 0.6 × 106 M−1. The present study provides an additional axis towards the utilization of Mtf as MARK4 inhibitor targeting diabetes with NDs. 相似文献
16.
Mauy Frujuello Mana Maria Cndida R. Parisi Maria Lucia Correa-Giannella Arnaldo Moura Neto Ademar Yamanaka Marlone Cunha-Silva Ana Mercedes Cavaleiro Cristina Rodrigues dos Santos Clia Regina Pavan Tiago Sev-Pereira Sergio S. J. Dertkigil Daniel F. Mazo 《Molecules (Basel, Switzerland)》2022,27(10)
Fibroblast growth factor 21 (FGF21) signaling and genetic factors are involved in non-alcoholic fatty liver disease (NAFLD) pathogenesis. However, these factors have rarely been studied in type 2 diabetes mellitus (T2D) patients from admixed populations such as in those of Brazil. Therefore, we aimed to evaluate rs738409 patanin-like phospholipase domain-containing protein (PNPLA3) and rs499765 FGF21 polymorphisms in T2D, and their association with NAFLD, liver fibrosis, and serum biomarkers (FGF21 and cytokeratin 18 levels). A total of 158 patients were included, and the frequency of NAFLD was 88.6%, which was independently associated with elevated body mass index. Significant liver fibrosis (≥F2) was detected by transient elastography (TE) in 26.8% of NAFLD patients, and was independently associated with obesity, low density lipoprotein, and gamma-glutamyl transferase (GGT). PNPLA3 GG genotype and GGT were independently associated with cirrhosis. PNPLA3 GG genotype patients had higher GGT and AST levels; PNPLA3 GG carriers had higher TE values than CG patients, and FGF21 CG genotype patients showed lower gamma-GT values than CC patients. No differences were found in serum values of FGF21 and CK18 in relation to the presence of NAFLD or liver fibrosis. The proportion of NAFLD patients with liver fibrosis was relevant in the present admixed T2D population, and was associated with PNPLA3 polymorphisms. 相似文献
17.
Tejaswini Maradesha Shashank M. Patil Khalid Awadh Al-Mutairi Ramith Ramu SubbaRao V. Madhunapantula Taha Alqadi 《Molecules (Basel, Switzerland)》2022,27(6)
For the first time, α-glucosidase, α-amylase, aldose reductase, and glycation at multiple stages inhibitory assays were used to explore the antidiabetic potential of whole unripe jackfruit (peel with pulp, flake, and seed). Two polyphenols (phenolic acids) with strong antihyperglycaemic activity were isolated from the methanol extract of whole jackfruit flour (MJ) using activity-guided repeated fractionation on a silica gel column chromatography. The bioactive compounds isolated were identified as 3-(3,4-Dihydroxyphenyl)-2-propenoic acid (caffeic acid: CA) and 4-Hydroxy-3,5-dimethoxybenzoic acid (syringic acid: SA) after various physicochemical and spectroscopic investigations. CA (IC50: 8.0 and 26.90 µg/mL) and SA (IC50: 7.5 and 25.25 µg/mL) were identified to inhibit α-glucosidase and α-amylase in a competitive manner with low Ki values. In vitro glycation experiments further revealed that MJ and its components inhibited each stage of protein glycation as well as the generation of intermediate chemicals. Furthermore, CA (IC50: 3.10) and SA (IC50: 3.0 µg/mL) inhibited aldose reductase effectively in a non-competitive manner, respectively. The binding affinity of these substances towards the enzymes examined has been proposed by molecular docking and molecular dynamics simulation studies, which may explain their inhibitory activities. The found potential of MJ in antihyperglycaemic activity via inhibition of α-glucosidase and in antidiabetic action via inhibition of the polyol pathway and protein glycation is more likely to be related to the presence of the phenolic compounds, according to our findings. 相似文献
18.
19.
Jin-long Dong Bin Wen Zhen Song Jie Chai Bin Liu Wen-juan Tian Gang Liang Bin-sheng Yang 《Arabian Journal of Chemistry》2021,14(7):103236
The chromium(III) complex, Cr(C7H3NO4)2·C4H12N5 (1), was synthesised by chelating chromium with dipicolinic (H2dipic) in methanol, and its structure was characterised using elemental analysis (EA), spectroscopy (infrared, UV–visible, and fluorescence) and single-crystal X-ray method. The density functional theoretical (DFT) computation was performed using the Gaussian 09 package. The stability of solution at different temperatures and pH values, the electrochemical, morphological and thermal properties of complex 1 were discussed. The preliminary bioactivities of complex 1 in streptozotocin (STZ)-induced type 2 diabetes mellitus (T2DM) mice were investigated using daily oral gavage for 12 weeks. The cytotoxicity was assessed using the methyl thiazolyl tetrazolium (MTT) assays, and the acute toxicity experiment test was carried out on healthy C57BL/6 mice with this complex. The complex 1 crystallised in the monoclinic system with the space group P2(1)/n, R1 = 0.0642. The DFT-optimised structure of complex 1 was in excellent agreement with the X-ray crystal structure. The complex 1 exhibited good physical and chemical properties and beneficial function on blood glucose and lipid metabolism for T2DM. The antidiabetic activity of chromium(III) might be associated with chromium(VI). Furthermore, the cytotoxicity and the acute toxicity experiments showed that the complex 1 was hypotonic and secure to organism. The study of complex 1 showed that the prepared complex on the basis of H2dipic and Met could inhibit hyperglycaemia and hyperlipidaemia in vivo and did not have potential toxicity. These results demonstrated that the complex 1 might provide an important reference for the development of functional hypoglycaemic foods or pharmaceuticals of T2DM. 相似文献
20.
Type 2 diabetes mellitus (T2DM) and its attendant complications, such as diabetic nephropathy (DN), impose a significant societal and economic burden. The investigation of discovering potential biomarkers for T2DM and DN will facilitate the prediction and prevention of diabetes. Phospholipids (PLs) and their metabolisms are closely allied to nosogenesis and aggravation of T2DM and DN. The aim of this study is to characterize the human plasma phospholipids in T2DM and DN to identify potential biomarkers of T2DM and DN. Normal phase liquid chromatography coupled with time of flight mass spectrometry (NPLC-TOF/MS) was applied to the plasma phospholipids metabolic profiling of T2DM and DN. The plasma samples from control (n = 30), T2DM subjects (n = 30), and DN subjects (n = 52) were collected and analyzed. The significant difference in metabolic profiling was observed between healthy control group and DM group as well as between control group and DN group by the help of partial least squares discriminant analysis (PLS-DA). PLS-DA and one-way analysis of variance (ANOVA) were successfully used to screen out potential biomarkers from complex mass spectrometry data. The identification of molecular components of potential biomarkers was performed on Ion trap-MS/MS. An external standard method was applied to quantitative analysis of potential biomarkers. As a result, 18 compounds in 7 PL classes with significant regulation in patients compared with healthy controls were regarded as potential biomarkers for T2DM or DN. Among them, 3 DM-specific biomarkers, 8 DN-specific biomarkers and 7 common biomarkers to DM and DN were identified. Ultimately, 2 novel biomarkers, i.e., PI C18:0/22:6 and SM dC18:0/20:2, can be used to discriminate healthy individuals, T2DM cases and DN cases from each other group. 相似文献