首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
邹广平  谌赫  唱忠良 《力学学报》2017,49(1):117-125
冲击剪切载荷作用下动态断裂韧性的测定是材料力学性能和断裂行为研究中重要组成部分.为了测定材料的Ⅱ型动态断裂韧性,许多学者采用不同的试样与实验方法进行了实验,但限于实验条件,裂纹断裂模式往往是I+Ⅱ复合型,而不是纯Ⅱ型,因而不能准确测得材料的Ⅱ型动态断裂韧性.鉴于此,本文基于分离式霍普金森拉杆(split Hopkinson tension bar,SHTB)实验技术,提出一种改进的紧凑拉伸剪切(modified compact tension shear,MCTS)试样,通过夹具对MCTS试样施加约束,从而保证试样按照纯Ⅱ型模式断裂.采用实验-数值方法对MCTS试样动态加载过程进行分析,将实验测得的波形输入有限元软件ANSYS-LSDYNA,得到了裂纹尖端应力强度因子-时间曲线,并与紧凑拉伸剪切(compact tension shear,CTS)试样进行了对比.同时采用数字图像相关法进行了实验,验证了有限元分析结果.结果表明,MCTS试样在整个加载过程中K_I K_Ⅱ,裂纹没有张开;而CTS试样在同样的加载过程中K_IK_Ⅱ,出现裂纹张开现象.这说明MCTS试样能够准确地测定材料的Ⅱ型动态断裂韧性,为材料动态力学测试提供了一种有效的实验技术.  相似文献   

3.
The nonlinear analytical solutions of an end notched flexure adhesive joint or fracture test specimen with identical or dissimilar adherends are investigated. In the current study, a cohesive zone model (with arbitrary nonlinear cohesive laws) based analytical solution is obtained for the interface shear fracture of an end notched flexure (ENF) specimen with sufficiently long bond length. It is found that the scatter and inconsistency in calculating Mode II toughness may be significantly reduced by this model. The present work indicates that the Mode II toughness GIIc under pure shear cracking condition is indeed very weakly dependent on the initial crack length. And this conclusion is well supported by the experimental results found in the literature. The parametric studies show that the interface shear strength is the most dominant parameter on the critical load. It is also interesting to note that with very short initial crack length and identical interface shear strength, higher Mode II toughness indeed cannot increase the critical load. Unlike the high insensitivity of critical load to the detailed shape of the cohesive law for Mode I peel fracture, the shape of the cohesive law becomes relatively important for the critical load of joints under pure Mode II fracture conditions, especially for joints with short initial crack length. The current study may help researchers deepen the understanding of interface shear fracture and clarify some previous concepts on this fracture mode.  相似文献   

4.
Under mixed mode loading, the crack tip blunts and undergoes displacements in two directions, the normal and shear component corresponding to Mode I and Mode II loading, respectively. These local displacements are determined by the duplicated film method and used to analyze the behavior of mixed mode fracture in aluminum alloy LY12. The mixed mode resultant crack opening displacement (COD) at fracture initiation tends to increase more rapidly with increase of the Mode II shear component. The fracture initiation value of COD for pure Mode II loading is six (6) times greater than that for Mode 1 loading. The same applies to the maximum effective plastic strain crack growth near the crack front. Observed are two typical morphologies, the equal-axes dimples and the parabolic dimples with evidence of slippage as dominated, respectively, by Mode I and Mode II loading.  相似文献   

5.
The present paper discusses the results of an investigation into the effects of test rate and the mode of loading on the fracture energy, Gc, of adhesively-bonded fibre-composite joints. Various carbon-fibre reinforced-polymer (CFRP) matrix composite substrates have been bonded using two different types of automotive structural epoxy-adhesives. They have been tested via loading the bonded joints in mode I (tensile), mode II (in-plane shear) and mixed-mode I/II from slow rates (i.e., of about 10?5 m/s) up to relatively high rates of test of about 15 m/s. The high-rate tests were photographed using a high-speed digital video camera to record the deformation of the joint and the fracture behaviour. An analysis strategy has been developed for the various modes of loading (i) to account for the observed fracture behaviour, (ii) to circumvent the problems posed by oscillations in the load traces due to the presence of dynamic effects in the faster tests, and (iii) to account for the kinetic energy associated with the moving specimen arms in the faster tests. Based on the analysis strategy developed, the effect of the test rate on the fracture energy, Gc, for the different loading modes for the joints has been ascertained. Furthermore, various different fracture paths were observed in the tests. They were either cohesive, in the adhesive layer, or interlaminar in the composite substrates. The exact fracture path observed was a function of (i) the type of composite substrate, (ii) the type of adhesive, and (iii) the mode of loading employed. However, the nature of the fracture path was found to be quite insensitive to the test rate. Essentially, it was found that joints subjected to mixed-mode I/II loading were more likely to exhibit an interlaminar fracture path in the composite substrates than when loaded in either pure modes I or II. The propensity for a given joint to exhibit such a fracture path via delamination of the composite substrate has been explained by calculating the transverse tensile stresses induced in the loaded composite arms, and comparing this value to the measured transverse tensile strength of the composite. Following this approach, the underlying reasons for the observed fracture path were identified and could be predicted. Also, the proposed scheme provides a route to design against delamination failure occurring in adhesively-bonded fibre-composite test specimens.  相似文献   

6.
In the present paper, the influence of carbon nanofiber on interlaminar fracture toughness of CFRP investigated using MMB(Mixed Mode Bending) tests. Vapor grown carbon fiber VGCF and VGCF-S, and multi-walled carbon nanotube MWNT-7 has been employed for the toughener of the interlayer on the CFRP laminates. In order to evaluate the fracture toughness and mixed mode ratio of it, double cantilever beam (DCB) tests, end notched fracture (ENF) tests and mixed mode bending (MMB) tests have been carried out. Boundary element analysis was applied to the CFRP model to compute the interlaminar fracture toughness, where extrapolation method was used to determine the fracture toughness and mixed mode ratio. The interlaminar fracture toughness and mixed mode ratio can be extrapolated by stress distribution in the vicinity of the crack tip of the CFRP laminate. It was found that the interlaminar fracture toughness of the CFRP laminates was improved inserting the interlayer made by carbon nanofiber especially in the region where shear mode deformation is dominant.  相似文献   

7.
A laboratory creasing device to capture the most important properties of a commercial rotary creasing tool was designed. Finite element analysis of the creasing of a multiply paperboard in the laboratory crease device was presented. The multiply paperboard was modeled as a multilayered structure with cohesive softening interface model connecting the paperboard plies. The paperboard plies were modeled by an anisotropic elastic–plastic material model. The purpose of the analysis of the laboratory creasing device was to present material models that represent paperboard, and to investigate how well the analysis captured the multiply paperboard behavior during laboratory creasing. And to increase the understanding of what multiply paperboard properties that influence the laboratory crease operation. The result of the simulations showed very good correlations with the experimental obtained results. The results indicated that the paperboard properties that have the most influence is the out-of-plane shear, out-of-plane compression and the friction between the laboratory creasing device and the paperboard.  相似文献   

8.
A three-dimensional (3-D) finite element analysis was performed on a [90,(+45/−45)n,(−45/+45)n,90]s class of laminated composites under the edge crack torsion (ECT) test configuration. Finite element delamination models were established and formulas for calculating the Mode III fracture toughness from 3-D finite element models were developed. The relations between the interlaminar fracture behavior and various configuration parameters were investigated and the effects of point loads, ends, geometry, Mode II interference, and friction were evaluated. Results showed that with proper selection of ECT specimen configuration and layup, the delamination could grow in pure Mode III in the middle region of the specimen. Specimen end effect played an important role in the ECT test. A Mode II component occurred in the end regions but it did not interfere significantly with the Mode III delamination state. Specimen dimension ratio, layup, and crack length exhibited significant effect on the interlaminar fracture behavior and the calculated strain energy release rates. However, friction between crackfaces was found to have negligible effect on the interlaminar properties.  相似文献   

9.
A criterion was proposed to predict brittle fracture in engineering components containing sharp V-shaped notches and subjected to mixed mode I/II loading. The criterion, called SV-MTS, was developed based on the maximum tangential stress (MTS) criterion proposed originally for analyzing crack problems. The curves which are obtained from the SV-MTS criterion could be used conveniently to predict the fracture resistance and also the notch bifurcation angle in sharp V-notched components under pure mode II and also mixed mode loading. To evaluate the validity of the proposed criterion, a set of fracture tests were conducted on a new test specimen, called sharp V-notched Brazilian disc (SV-BD), under mixed mode loading conditions. It is shown that the experimental results obtained from PMMA specimens are in very good agreement with the curves of SV-MTS criterion.  相似文献   

10.
提出了多亚层柔性节点模型用于分析双材料裂纹尖端的应力和变形。该模型考虑了胶层的变形,各亚层视为独立的剪切变形梁,采用两个界面柔度系数考虑界面应力对各亚层界面变形的影响,界面变形包括双材料界面和胶层的变形。通过对FRP-混凝土末端切口四点弯试件(Four-point bending end-notched flexure specimen,简称4ENF)进行界面分析,并与其他模型和有限元分析对比表明:刚性节点模型忽略了裂纹尖端的应力和变形集中,只能粗略地估计构件的整体变形和界面应力;半刚性节点容许裂纹尖端的转动,对裂纹尖端的变形估计优于刚性节点模型,但精度依然不高;多亚层柔性节点模型反映了裂纹尖端的应力和变形集中,与数值分析结果吻合很好,该研究对进行双材料结构的工程设计具有理论指导和参考价值。  相似文献   

11.
Interfacial fracture of adhesive bonds undergoing large-scale yielding is studied using a combined experimental/finite-element approach. The full range of in-plane mode mixity is produced over bond thickness ranging from 30 to 500 μm using the scarf and the ENF joint geometries. Novel techniques for introducing pre-cracks and surface decoration, together with in situ observations, facilitate accurate determination of the bond-average and the local shear strains at the crack tip during the onset as well as the rest of the crack propagation event. The crack generally grew along one of the two interfaces of the bond, although the failure was always fully cohesive. The local shear strain at the crack tip is independent of the bond thickness, and, under quasi-static conditions, it remains constant throughout the growth, which make it a viable fracture parameter. This quantity strongly depends on the mode mixity, the sign of the phase angle (i.e., shearing direction) and the crack speed, however.A finite-element analysis is used to obtain the crack tip deformation field for an interface crack in adhesively bonded scarf and ENF joints. Large-strain and quasi-static conditions are assumed. A distinct material model in the fracture process zone that allows for volume change in the post-yield regime is incorporated into the analysis. The local deformation is characterized by a pair of bond-normal and tangential displacements corresponding to the nodal points adjacent to the crack tip. The critical values of these quantities are obtained when the FEM bond-average shear strain at the crack tip becomes equal to its experimental counterpart. The so defined critical local displacements, after an appropriate normalization, seem to conform to a single-valued, linear type interrelationship over the entire range of mode mixity. The fact that this relationship is independent of the bond thickness, and furthermore it encompasses both cases of positive and negative phase angles, makes it a viable candidate for characterizing mixed-mode interfacial fracture under large-deformation conditions.  相似文献   

12.
The objective of this paper is to propose a novel methodology for determining dynamic fracture toughness (DFT) of materials under mixed mode I/II impact loading. Previous experimental investigations on mixed mode fracture have been largely limited to qusi-static conditions, due to difficulties in the generation of mixed mode dynamic loading and the precise control of mode mixity at crack tip, in absence of sophisticated experimental techniques. In this study, a hybrid experimental–numerical approach is employed to measure mixed mode DFT of 40Cr high strength steel, with the aid of the split Hopkinson tension bar (SHTB) apparatus and finite element analysis (FEA). A fixture device and a series of tensile specimens with an inclined center crack are designed for the tests to generate the components of mode I and mode II dynamic stress intensity factors (DSIF). Through the change of the crack inclination angle β (=90°, 60°, 45°, and 30°), the KII/KI ratio is successfully controlled in the range from 0 to 1.14. A mixed mode I/II dynamic fracture plane, which can also exhibit the information of crack inclination angle and loading rate at the same time, is obtained based on the experimental results. A safety zone is determined in this plane according to the characteristic line. Through observation of the fracture surfaces, different fracture mechanisms are found for pure mode I and mixed mode fractures.  相似文献   

13.
A disk-shaped compact tension (DC(T)) test has been developed as a practical method for obtaining the fracture energy of asphalt concrete. The main purpose of the development of this specimen geometry is the ability to test cylindrical cores obtained from in-place asphalt concrete pavements or gyratory-compacted specimens fabricated during the mixture design process. A suitable specimen geometry was developed using the ASTM E399 standard for compact tension testing of metals as a starting point. After finalizing the specimen geometry, a typical asphalt concrete surface mixture was tested at various temperatures and loading rates to evaluate the proposed DC(T) configuration. The variability of the fracture energy obtained from the DC(T) geometry was found to be comparable with the variability associated with other fracture tests for asphalt concrete. The ability of the test to detect changes in the fracture energy with the various testing conditions (temperature and loading rate) was the benchmark for determining the potential of using the DC(T) geometry. The test has the capability to capture the transition of asphalt concrete from a brittle material at low temperatures to a more ductile material at higher temperatures. Because testing was conducted on ungrooved specimens, special care was taken to quantify deviations of the crack path from the pure mode I crack path. An analysis of variance of test data revealed that the prototype DC(T) can detect statistical differences in fracture energy resulting for tests conducted across a useful range of test temperatures and loading rates. This specific analysis also indicated that fracture energy is not correlated to crack deviation angle. This paper also provides an overview of ongoing work integrating experimental results and observations with numerical analysis by means of a cohesive zone model tailored for asphalt concrete fracture behavior.  相似文献   

14.
The delamination energy and fracture behaviour under static and dynamic mode I loading of two composites, made of the same unidirectional carbon reinforcement embedded in two different matrices, one tough and the other brittle, was investigated with the aim of analyzing the influence of the employed resin on the fatigue delamination behaviour of both composites. In the case of dynamic loading, the number of cycles necessary for the onset of delamination was determined for a given elastic energy release rate and crack growth rate for different critical energy rates. The double cantilever beam (DCB) test was found to be suitable for promoting the initial delamination. The experimental results confirm the enhanced performance of the tough resin both in terms of crack initiation and growth rate.  相似文献   

15.
Finite element method (FEM) has been used to analyze the stress and strain fields and the stress tri-axial levels around the tip of the crack under mode- II loading. The results show that: under mode- II loading, the direction of the maximum tensile stress and that of the maximum tri-axial levels (R o ) exist at an angle of –75. 3° from the original crack plane; the maximum shear stress andR o = 0 exist along the original crack plane.Mode- II loading experiment using BHW-35 steel at different temperatures show that there are two kinds of fracture mode, opening mode (or tensile mode) and sliding mode (or shear mode). A decrease in temperature causes the fracture mode to change from shear mode to tensile mode. For BHW-35 steel, this critical temperature is about –90 C. Actually, under any kind of loading mode (mode I . mode II , mode III or mixed mode), there always exist several kinds of potenital fracture modes (for example, opening mode, sliding mode, tearing mode or mixed mode). The effect of temperature under mode- II loading is actually related to the change of the elastic-plastic properties of the material.  相似文献   

16.
Shear band formation and fracture are characterized during mode II loading of a Zr-based bulk metallic glass. The measured mode II fracture toughness, KIIc=75±4 MPa√m, exceeds the reported mode I fracture toughness by ∼4 times, suggesting that normal or mean stresses play a significant role in the deformation process at the crack tip. This effect is explained in light of a mean stress modified free volume model for shear localization in metallic glasses. Thermal imaging of deformation at the mode II crack tip further reveals that shear bands initiate, arrest, and reactivate along the same path, indicating that flow in the shear band leads to permanent changes in the glass structure that retain a memory of the shear band path. The measured temperature increase within the shear band is a fraction of a degree. However, heat dissipation models indicate that the temperature could have exceeded the glass transition temperature for less than 1 ms immediately after the shear band formed. It is shown that this time scale is sufficient for mechanical relaxation slightly above the glass transition temperature.  相似文献   

17.
黄如旭  万正权 《力学季刊》2021,42(1):178-186
基于形状改变能为材料起裂扩展控制参量的物理事实及裂纹尖端断裂控制区能量平均概念,提出了计及裂纹尖端应力场特征级数展开奇异项和常数项的广义平均形状改变能密度(GADSED)准则,建立了Ⅰ-Ⅱ-Ⅲ混合型裂纹断裂判据计算式,为工程结构疲劳断裂评估提供了新选择.基于提出的GADSED准则,系统分析了T应力对裂纹断裂判据的影响,结果表明:当参数|Bα|数值相同时:负值T应力的Ⅰ-Ⅱ混合型裂纹更易起裂扩展,正值T应力的KⅠf值高于负值T应力的KⅠf值,正负T应力的KⅡf值相同;T应力在区间0Ⅰf值(3%以内),T应力降低了KⅡf值.根据GADSED准则完成了双轴疲劳载荷平板表面Ⅰ型裂纹扩展寿命预报,结果表明:基于GADSED准则的裂纹扩展寿命预报值约为传统方法预报值的40.7%,可为工程实际评估提供借鉴.  相似文献   

18.
LC4—M材料复合型韧断主要影响因素的分析   总被引:5,自引:0,他引:5  
通过分析LC4-M铝合金材料在不同复合比载荷下的断裂试验结果,参照常规断裂现象,修正了一般断裂试验中认定裂纹启裂方向的方法,结合不同复合比下裂尖附近应力三维、主应力方向的计算分析,得到:在裂端的钝化变形区域、应力三维度的极大值处,对应于裂纹的启裂位置,即使在高韧性材料中发生剪切断裂的情况下也是如此;裂纹的启裂方向在拉伸断裂时与启裂点最大拉应力方向有关,在剪切断裂时启裂点最大剪应力方向有关,引起两种形式断裂的主要因数和破坏机理有很大不同。  相似文献   

19.
刘龙飞  周强 《爆炸与冲击》2018,38(4):749-758
采用分离式霍普金森杆实验技术,对表面加工后不同粗糙度的6061铝合金薄壁圆柱管进行动态膨胀断裂冻结回收实验,并对薄壁金属圆柱管动态膨胀断裂过程中裂纹萌生、扩展情况以及最终断裂模式等进行了研究。结果表明:相同冲击压力条件下,薄壁金属圆柱管表面粗糙度越大,材料越容易发生膨胀破裂;裂纹萌生于外壁面,由外向内扩展,并且裂纹的扩展主要受裂纹处应力状态的影响;薄壁金属圆柱管的断裂模式由拉伸和剪切断裂机制起主导作用,其断口为拉剪混合型断口。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号