首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions between sodium amides Na[N(SiMe3)R1] [R1 = SiMe3 (1), SiMe2Ph (2) or But (3)] and cyanoalkanes RCN (R = Ad or But) were investigated. In each case the nitrile adduct [Na{mu-N(SiMe3)2}(NCR)]2 [R = Ad (1a) or But (1b)], trans-[Na{mu-N(SiMe3)(SiMe2Ph)}(NCR)]2 [R = Ad (2a) or But (2b)], [(Na{mu-N(SiMe3)But})3(NCAd)3] (3a) or [(Na{mu-N(SiMe3)But})3(NCBut)n] [n = 3 (3b) or 2 (3c)] was isolated. The reaction of complexes 3a or 3b with benzene afforded the ketimido complex [Na{mu-N=C(Ad)(Ph)}]6.2C6H6 (4a) or [Na{mu-N=C(But)(Ph)}]6 (4b); the former was also prepared in more conventional fashion from NaPh and AdCN. The synthesis and structure of an analogue of complex 1a, [Li{mu-N(SiMe3)2}(NCAd)]2 (5a), is also presented. The compounds 1a, 1b, 2a, 2b, 3, 3b, 4a, 4b and 5a were characterised by X-ray diffraction.  相似文献   

2.
A series of titanium-group 3/lanthanide metal complexes have been prepared by reaction of [{Ti(η(5)-C(5)Me(5))(μ-NH)}(3)(μ(3)-N)] (1) with halide, triflate, or amido derivatives of the rare-earth metals. Treatment of 1 with metal halide complexes [MCl(3)(thf)(n)] or metal trifluoromethanesulfonate derivatives [M(O(3)SCF(3))(3)] at room temperature affords the cube-type adducts [X(3)M{(μ(3)-NH)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (X = Cl, M = Sc (2), Y (3), La (4), Sm (5), Er (6), Lu (7); X = OTf, M = Y (8), Sm (9), Er (10)). Treatment of yttrium (3) and lanthanum (4) halide complexes with 3 equiv of lithium 2,6-dimethylphenoxido [LiOAr] produces the aryloxido complexes [(ArO)(3)M{(μ(3)-NH)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (M = Y (11), La (12)). Complex 1 reacts with 0.5 equiv of rare-earth bis(trimethylsilyl)amido derivatives [M{N(SiMe(3))(2)}(3)] in toluene at 85-180 °C to afford the corner-shared double-cube nitrido compounds [M(μ(3)-N)(3)(μ(3)-NH)(3){Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}(2)] (M = Sc (13), Y (14), La (15), Sm (16), Eu (17), Er (18), Lu (19)) via NH(SiMe(3))(2) elimination. A single-cube intermediate [{(Me(3)Si)(2)N}Sc{(μ(3)-N)(2)(μ(3)-NH)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (20) was obtained by the treatment of 1 with 1 equiv of the scandium bis(trimethylsilyl)amido derivative [Sc{N(SiMe(3))(2)}(3)]. The X-ray crystal structures of 2, 7, 11, 14, 15, and 19 have been determined. The thermal decomposition in the solid state of double-cube nitrido complexes 14, 15, and 18 has been investigated by thermogravimetric analysis (TGA) and differential thermal analysis (DTA) measurements, as well as by pyrolysis experiments at 1100 °C under different atmospheres (Ar, H(2)/N(2), NH(3)) for the yttrium complex 14.  相似文献   

3.
The new boron dihalides of the type [HC(CMe)(2)(NC(6)F(5))(2)]BX(2) (X = Cl, Br, I) have been prepared and characterized by single-crystal X-ray diffraction. Of the various synthetic approaches explored, the best method in terms of yield and product purity involves the silylhalide elimination reaction of the silylated iminoamine [HC(CMe)(2)(NC(6)F(5))(N{SiMe(3)}C(6)F(5))] with BX(3). Chloroborenium salt [HC(CMe)(2)(NC(6)F(5))(2)BCl][AlCl(4)] was prepared by treatment of [HC(CMe)(2)(NC(6)F(5))(2)]BCl(2) with AlCl(3) in CH(2)Cl(2) solution. This salt was also structurally authenticated and represents the first such data for a beta-diketiminate-supported haloborenium cation.  相似文献   

4.
The Vaska-type iridium(I) complex [IrCl(CO){PPh(2)(2-MeC(6)H(4))}(2)] (1), characterized by an X-ray diffraction study, was obtained from iridium(III) chloride hydrate and PPh(2)(2,6-MeRC(6)H(3)) with R=H in DMF, whereas for R=Me, activation of two ortho-methyl groups resulted in the biscyclometalated iridium(III) compound [IrCl(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}(2)] (2). Conversely, for R=Me the iridium(I) compound [IrCl(CO){PPh(2)(2,6-Me(2)C(6)H(3))}(2)] (3) can be obtained by treatment of [IrCl(COE)(2)](2) (COE=cyclooctene) with carbon monoxide and the phosphane in acetonitrile. Compound 3 in CH(2)Cl(2) undergoes intramolecular C-H oxidative addition, affording the cyclometalated hydride iridium(III) species [IrHCl(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}{PPh(2)(2,6-Me(2)C(6)H(3))}] (4). Treatment of 2 with Na[BAr(f) (4)] (Ar(f)=3,5-C(6)H(3)(CF(3))(2)) gives the fluxional cationic 16-electron complex [Ir(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}(2)][BAr(f) (4)] (5), which reversibly reacts with dihydrogen to afford the delta-agostic complex [IrH(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}{PPh(2)(2,6-Me(2)C(6)H(3))}][BAr(f)(4)] (6), through cleavage of an Ir-C bond. This species can also be formed by treatment of 4 with Na[BAr(f)(4)] or of 2 with Na[BAr(f)(4)] through C-H oxidative addition of one ortho-methyl group, via a transient 14-electron iridium(I) complex. Heating of the coordinatively unsaturated biscyclometalated species 5 in toluene gives the trans-dihydride iridium(III) complex [IrH(2)(CO){PPh(2)(2,6-MeC(6)H(3)CH=CHC(6)H(3)Me-2,6)PPh(2)}][BAr(f) (4)] (7), containing a trans-stilbene-type terdentate ligand, as result of a dehydrogenative carbon-carbon double bond coupling reaction, possibly through an iridium carbene species.  相似文献   

5.
Pi C  Liu R  Zheng P  Chen Z  Zhou X 《Inorganic chemistry》2007,46(13):5252-5259
The dinuclear ytterbium pyridyl diamido complexes [Cp(2)Yb(THF)](2)[mu-eta(1):eta(2)-(NH)(2)(C(5)H(3)N-2,6)] (1a) and [Cp(2)Yb(THF)](2)[mu-eta(1):eta(2)-(NH)(2)(C(5)H(3)N-2,3)] (1b) are easily prepared by protonolysis of Cp(3)Yb with 0.5 equiv of the corresponding diaminopyridine in accepted yields, respectively. Treatment of 1a with 2 equiv of dicyclohexylcarbodiimide (CyN=C=NCy) in THF at low temperature leads to the isolation of the formal double N-H addition product (Cp(2)Yb)(2)[mu-eta(2):eta(2)-(CyN(CyNH)CN)(2)(C(5)H(3)N-2,6)] (2) in 42% yield. Compound 2 is unstable to heat and slowly isomerized to the mixed neutral/dianionic diguanidinate complex (Cp(2)Yb)(2)[mu-eta(2):eta(2)-(CyNH)(2)CN(C(5)H(3)N-2,6)NC(NCy)(2)](THF) (3) at room temperature. Similarly, treatment of 1b with 2 equiv of CyN=C=NCy gives the addition/ isomerization product (Cp(2)Yb)(2)[mu-eta(2):eta(2):eta(1)-(CyNH)(2)CN(C(5)H(3)N-2,3)NC(NCy)(2)] (4). Moreover, the reaction of various ytterbium aryl diamido complexes (prepared in situ from [Cp(2)YbMe](2) and aryldiamine, respectively) with CyN=C=NCy affords the corresponding addition products (Cp(2)Yb)(2)[mu-eta(2):eta(2)-{CyN(CyNH)CN}(2)(C(6)H(4)-1,4)] (5), (Cp(2)Yb)(2)[mu-eta(2):eta(2)-{CyN(CyNH)CN}(2)(C(6)H(4)-1,3)](6), and (Cp(2)Yb)(2)[mu-eta(2):eta(2)-{CyN(CyNH)CN}(2)(C(13)H(8)-2,7)] (7), respectively. In contrast to pyridyl-bridged bis(guanidinate monoanion) complexes, aryl-bridged bis(guanidinate monoanion) complexes 5-7 are stable even with prolonged heating at 110 degrees C. All the results not only demonstrate that the presence of the pyridyl bridge can impart the diamido complexes with a unique reactivity and initiate the unexpected reaction sequence but also indicate evidently that the number and distribution of negative charges of the diguanidinate ligand is tunable from double monoanionic units to mixed neutral/dianionic isomers. All the complexes are characterized by elemental analysis and IR spectroscopies. The structures of complexes 1a, 3, 5, 6, and 7 are also determined through X-ray single-crystal diffraction analysis.  相似文献   

6.
The crystalline compounds [Mg(Br)(L)(thf)].0.5Et2O [L = {N(R)C(C6H3Me2-2,6)}2SiR, R = SiMe3] (1), [Mg(L){N=C=C(C(Me)=CH)2CH2}(D)2] [D = NCC6H3Me2-2,6 (2), thf (3)] and [{Mg(L)}2{mu-OSO(CF3)O-[mu}2] (4) were prepared from (a) Si(Br)(R){C(C6H3Me2-2,6)=NR}2 and Mg for (1), (b) [Mg(SiR3)2(thf)2] and 2,6-Me2C6H3CN (5 mol for (2), 3 mol for (3)), and (c) (2) + Me3SiOS(O)2CF3 for (4); a coproduct from (c) is believed to have been the trimethylsilyl ketenimide Me3SiN=C=C{C(Me)=CH}2CH2 (5).  相似文献   

7.
In contrast to the neutral macrocycle [UN*(2)(N,C)] (1) [N* = N(SiMe(3))(3); N,C = CH(2)SiMe(2)N(SiMe(3))] which was quite inert toward I(2), the anionic bismetallacycle [NaUN*(N,C)(2)] (2) was readily transformed into the enlarged monometallacycle [UN*(N,N)I] (4) [N,N = (Me(3)Si)NSiMe(2)CH(2)CH(2)SiMe(2)N(SiMe(3))] resulting from C-C coupling of the two CH(2) groups, and [NaUN*(N,O)(2)] (3) [N,O = OC(═CH(2))SiMe(2)N(SiMe(3))], which is devoid of any U-C bond, was oxidized into the U(V) bismetallacycle [Na{UN*(N,O)(2)}(2)(μ-I)] (5). Sodium amalgam reduction of 4 gave the U(III) compound [UN*(N,N)] (6). Addition of MN(3) or MCN to the (N,C), (N,N), and (N,O) metallacycles 1, 4, and 5 led to the formation of the anionic azide or cyanide derivatives M[UN*(2)(N,C)(N(3))] [M = Na, 7a or Na(15-crown-5), 7b], M[UN*(2)(N,C)(CN)] [M = NEt(4), 8a or Na(15-crown-5), 8b or K(18-crown-6), 8c], M[UN*(N,N)(N(3))(2)] [M = Na, 9a or Na(THF)(4), 9b], [NEt(4)][UN*(N,N)(CN)(2)] (10), M[UN*(N,O)(2)(N(3))] [M = Na, 11a or Na(15-crown-5), 11b], M[UN*(N,O)(2)(CN)] [M = NEt(4), 12a or Na(15-crown-5), 12b]. In the presence of excess iodine in THF, the cyanide 12a was converted back into the iodide 5, while the azide 11a was transformed into the neutral U(V) complex [U(N{SiMe(3)}SiMe(2)C{CHI}O)(2)I(THF)] (13). The X-ray crystal structures of 4, 7b, 8a-c, 9b, 10, 12b, and 13 were determined.  相似文献   

8.
The reaction of N,N'-bis(trimethylsilyl)ethylenediamine with H(3)Al.NMe(3) gives products based on metalation (H(2) elimination), [{[CH(2)N(SiMe(3))](2)AlH}(2)] (1) and [{CH(2)N(SiMe(3))}(2)AlN(SiMe(3))CH(2)CH(2)N(H)SiMe(3)] (2), as well as products derived from N-Si bond cleavage and metalation, [{[CH(2)N(SiMe(3))](2)AlH}(2){HAlN(SiMe(3))CH(2)CH(2)NAlH(2)}] (4) and [H(2)Al{CH(2)N(SiMe(3))}(2)AlN(SiMe(3))CH(2)CH(2)NAl(H)(2).NMe(3)}] (5). Similarly, [Me(3)SiN(H)CH(2)CH(2)N(SiMe(3))AlCl(2)] (3) was isolated as the redistributed/metalated product from the reaction of the same diamine with H(2)Al(Cl).NMe(3). The following crystal data were obtained: (1) monoclinic, space group P2(1)/c (No. 14), a = 13.636(4) ?, b = 9.565(3) ?, c = 22.683(4) ?, beta = 105.67(2) degrees, Z = 4; (2) monoclinic, space group C2/c (No. 15), a = 31.887(3) ?, b = 10.145(6) ?, c = 17.718(3) ?, beta = 100.36(1) degrees, Z = 8; (3) triclinic, space group P&onemacr; (No. 2), a = 11.762(3) ?, b = 11.927(3) ?, c = 7.288(2) ?, alpha = 107.46(2) degrees, beta = 95.29(2) degrees, gamma = 110.41(2) degrees, Z = 2; (4) triclinic, space group P&onemacr; (No. 2), a = 13.884(4) ?, b = 15.379(4) ?, c = 11.044(2) ?, alpha = 102.11(2) degrees, beta = 103.85(2) degrees, gamma = 109.28(2) degrees, Z = 2; (5) triclinic, space group P&onemacr; (No. 2), a = 10.925(5) ?, b = 11.060(5) ?, c = 12.726(4) ?, alpha = 92.38(3) degrees, beta = 95.67(2) degrees, gamma = 96.90(2) degrees, Z = 2.  相似文献   

9.
Transition-metal-borylene complexes of the type [(OC)(5)M=BR] {M=Cr, Mo, W; R=N(SiMe(3))(2), 1a-3a, Si(SiMe(3))(3), 4a} and [(OC)(4)Fe=B=N(SiMe(3))(2)] (8) were prepared by salt elimination reactions. Synthesis of the latter complex was accompanied by the formation of substantial amounts of an unusual dinuclear iron complex [Fe(2){mu-C(2)O(2)(BN(SiMe(3))(2))}(2)(CO)(6)] (9). The aminoborylene complexes of Group 6 metals were converted to trans-[(Cy(3)P)(CO)(4)M=B=N(SiMe(3))(2)] (5a-7a) by irradiation in the presence of PCy(3). Structural and spectroscopic parameters were discussed with respect to the trans-effect of the borylene ligand and the degree of M-B d(pi)-p(pi)-backbonding. Computational studies were performed on Group 6-borylene complexes. The population and topological analyses as well as the molecular orbital composition are consistent with the presence of both sigma-and pi-type interactions. There are, however, indications that the d(pi)-p(pi)-backbonding in the silylborylene complex is significantly more pronounced than in the aminoborylene complexes.  相似文献   

10.
Reactions of diphosphinohydrazines R-NH-N(PPh(2))(2) (R = tBu (1), Ph(2)P (3)) with some metalation reagents (Co[N(SiMe(3))(2)](2), LiN(SiMe(3))(2), La[N(SiMe(3))(2)](3), nBuLi, MeLi) were performed. Compound 1 was synthesized by the reaction of Ph(2)PCl with tert-butylhydrazine hydrochloride in 83% yield. This compound reveals temperature-dependent (31)P NMR spectra due to hindered rotation about the P-N bonds. Complicated redox reaction of 1 with Co[N(SiMe(3))(2)](2) proceeds with cleavage of the P-N and N-N bonds to form a binuclear cobalt complex [Co{HN(PPh(2))(2)-κ(2)P,P'}(2)(μ-PPh(2))](2) (2) demonstrating a short Co···Co distance of 2.3857(5) ?, which implies a formal double bond between the Co atoms. Strong nucleophiles (nBuLi, MeLi) cause fragmentation of the molecules 1 and 3, while reactions of 3 with lithium and lanthanum silylamides give products of the NNP → NPN rearrangement [Li{Ph(2)P(NPPh(2))(2)-κ(2)N,N'}(THF)(2)] (4) and [La{Ph(2)P(NPPh(2))(2)-κ(2)N,N'}{N(SiMe(3))(2)}(2)] (5), respectively. These complexes represent the first examples of a κ(2)N,N' bonding mode for the triphosphazenide ligand [(Ph(2)PN)(2)PPh(2)](-). DFT calculations showed large energy gain (52.1 kcal/mol) of the [NNP](-) to [NPN](-) anion rearrangement.  相似文献   

11.
Vanadium(III) and vanadium(V) complexes derived from the tris(2-thiolatoethyl)amine ligand [(NS3)3-] and the bis(2-thiolatoethyl)ether ligand [(OS2)2-] have been synthesized with the aim of investigating the potential of these vanadium sites to bind dinitrogen and activate its reduction. Evidence is presented for the transient existence of (V(NS3)(N2)V(NS3), and a series of mononuclear complexes containing hydrazine, hydrazide, imide, ammine, organic cyanide, and isocyanide ligands has been prepared and the chemistry of these complexes investigated. [V(NS3)O] (1) reacts with an excess of N2H4 to give, probably via the intermediates (V(NS3)(NNH2) (2a) and (V(NS3)(N2)V(NS3) (3), the V(III) adduct [V(NS3)(N2H4)] (4). If 1 is treated with 0.5 mol of N2H4, 0.5 mol of N2 is evolved and green, insoluble [(V(NS3))n] (5) results. Compound 4 is converted by disproportionation to [V(NS3)(NH3)] (6), but 4 does not act as a catalyst for disproportionation of N2H4 nor does it act as a catalyst for its reduction by Zn/HOC6H3Pri2-2,6. Compound 1 reacts with NR1(2)NR2(2) (R1 = H or SiMe3; R2(2) = Me2, MePh, or HPh) to give the hydrazide complexes [V(NS3)(NNR2(2)] (R2(2) = Me2, 2b; R2(2) = MePh, 2c; R2(2) = HPh, 2d), which are not protonated by anhydrous HBr nor are they reduced by Zn/HOC6H3Pri2-2,6. Compound 2b can also be prepared by reaction of [V(NNMe2)(dipp)3] (dipp = OC6H3Pri2-2,6) with NS3H3. N2H4 is displaced quantitatively from 4 by anions to give the salts [NR3(4)][V(NS3)X] (X = Cl, R3 = Et, 7a; X = Cl, R3 = Ph, 7b; X = Br, R3 = Et, 7c; X = N3, R3 = Bu(n), 7d; X = N3, R3 = Et, 7e; X = CN, R3 = Et, 7f). Compound 6 loses NH3 thermally to give 5, which can also be prepared from [VCl3(THF)3] and NS3H3/LiBun. Displacement of NH3 from 6 by ligands L gives the adducts [V(NS3)(L)] (L = MeCN, nu CN 2264 cm-1, 8a; L = ButNC, nu NC 2173 cm-1, 8b; L = C6H11NC, nu NC 2173 cm-1, 8c). Reaction of 4 with N3SiMe3 gives [V(NS3)(NSiMe3)] (9), which is converted to [V(NS3)(NH)] (10) by hydrolysis and to [V(NS3)(NCPh3)] (11) by reaction with ClCPh3. Compound 10 is converted into 1 by [NMe4]OH and to [V(NS3)NLi(THF)2] (12) by LiNPri in THF. A further range of imido complexes [V(NS3)(NR4)] (R4 = C6H4Y-4 where Y = H (13a), OMe (13b), Me (13c), Cl (13d), Br (13e), NO2 (13f); R4 = C6H4Y-3, where Y = OMe (13g); Cl (13h); R4 = C6H3Y2-3,4, where Y = Me (13i); Cl (13j); R4 = C6H11 (13k)) has been prepared by reaction of 1 with R4NCO. The precursor complex [V(OS2)O(dipp)] (14) [OS2(2-) = O(CH2CH2S)2(2-)] has been prepared from [VO(OPri)3], Hdipp, and OS2H2. It reacts with NH2NMe2 to give [V(OS2)(NNMe2)(dipp)] (15) and with N3SiMe3 to give [V(OS2)(NSiMe3)(dipp)] (16). A second oxide precursor, formulated as [V(OS2)1.5O] (17), has also been obtained, and it reacts with SiMe3NHNMe2 to give [V(OS2)(NNMe2)(OSiMe3)] (18). The X-ray crystal structures of the complexes 2b, 2c, 4, 6, 7a, 8a, 9, 10, 13d, 14, 15, 16, and 18 have been determined, and the 51V NMR and other spectroscopic parameters of the complexes are discussed in terms of electronic effects.  相似文献   

12.
Halogenated 1,3,5-triazapentadienyl ligands [N{(C(3)F(7))C(C(6)F(5))N}(2)](-), [N{(CF(3))C(C(6)F(5))N}(2)](-) and [N{(C(3)F(7))C(2,6-Cl(2)C(6)H(3))N}(2)](-), alone or in combination with other N-donors like CH(3)CN, CH(3)(CH(2))(2)CN, and N(C(2)H(5))(3), have been used in the stabilization of thermally stable, two-, three- or four-coordinate silver(i) adducts. X-Ray crystallographic analyses of {[N{(C(3)F(7))C(C(6)F(5))N}(2)]Ag}(n), {[N{(C(3)F(7))C(C(6)F(5))N}(2)]Ag(NCCH(3))}(n), {[N{(C(3)F(7))C(2,6-Cl(2)C(6)H(3))N}(2)]Ag(NCCH(3))}(n), {[N{(CF(3))C(C(6)F(5))N}(2)]Ag(NCCH(3))(2)}(n) and {[N{(C(3)F(7))C(C(6)F(5))N}(2)]Ag(NCC(3)H(7))}(n) revealed the presence of bridging 1,3,5-triazapentadienyl ligands bonded to silver through terminal nitrogen atoms. These adducts are polymeric in the solid state. [N{(C(3)F(7))C(2,6-Cl(2)C(6)H(3))N}(2)]AgN(C(2)H(5))(3) is monomeric and features a 1,3,5-triazapentadienyl ligand bonded to Ag(I) in a κ(1)-fashion via only one of the terminal nitrogen atoms. The solid state structure of [N{(C(3)F(7))C(C(6)F(5))N}(2)]H has also been reported and it forms polymeric chains via inter-molecular N-H···N hydrogen-bonding.  相似文献   

13.
Rare-earth metal alkyl tri(tert-butoxy)silanolate complexes [Ln{mu,eta2-OSi(O(t)Bu)3}(CH2SiMe3)2]2 (Ln = Y (1), Tb (2), Lu (3)) were prepared via protonolysis of the appropriate tris(alkyl) complex [Ln(CH2SiMe3)3(thf)2] with tri(tert-butoxy)silanol in pentane. Crystal structure analysis revealed a dinuclear structure for with square pyramidal geometry at the yttrium centre. The silanolate ligand coordinates in an eta2-bridging coordination mode giving a 4-rung truncated ladder and non-crystallographic inversion centre. Addition of two equiv. of 12-crown-4 to a pentane solution of 1 or 3 respectively gave [Ln{OSi(O(t)Bu)(3)}(CH2SiMe3)2(12-crown-4)].12-crown-4 (Ln = Y (4), Lu (5)). Crystal structure analysis of 5 showed a slightly distorted octahedral geometry at the lutetium centre. The silanolate ligand adopts an eta(1)-terminal coordination mode, whilst the crown ether unit coordinates in an unusual kappa3-fashion. Reaction of 1-3 with [NEt3H]+[BPh4]- in thf yielded the cationic derivatives [Ln{OSi(O(t)Bu)3}(CH2SiMe3)(thf)4]+[BPh4]- (Ln = Y (6), Tb (7) and Lu (8)); coordination of crown ether led to compounds of the form [Ln{OSi(O(t)Bu)3}(CH2SiMe3)(L)(thf)n]+[BPh4]- (Ln = Y, Lu, L = 12-crown-4, n = 1 (9,10); Ln = Y, Lu, L = 15-crown-5, n = 0 (11,12)). Reaction of 1 with [NMe2PhH]+[B(C6F5)4]-, [Al(CH2SiMe3)3] or BPh3 in thf gave the ion pairs [Y{OSi(O(t)Bu)3}(CH2SiMe3)(thf)4]+[A]- ([A]- = [B(C6F5)4]- (13), [Al(CH2SiMe3)4]- (14), [BPh3(CH2SiMe3)]- (15)), whilst two equiv. [NMe2PhH]+[BPh4]- with 1 in thf produced the dicationic ion triple [Y{OSi(O(t)Bu)3}(thf)6]2+[BPh4]-2 (16). Crystal structure analysis revealed that 16 is mononuclear with pentagonal bipyramidal geometry at the yttrium centre. The silanolate ligand coordinates in an eta(1)-terminal fashion. All diamagnetic compounds have been characterized by NMR spectroscopy. 1, 3, 4, 6 and 13 were tested as olefin hydrosilylation pre-catalysts with a variety of substrates; 1 was found to be highly active in 1-decene hydrosilylation.  相似文献   

14.
Facile synthetic routes have been developed that provide access to cationic and anionic water-soluble polyferrocenylsilane (PFS) polyelectrolytes with controlled molecular weight and narrow polydispersity. Living photolytic ring-opening polymerization of amino-functionalized [1]ferrocenophane (fc) monomers [fcSiMe{C[triple chemical bond]CCH(2)N(SiMe(2)CH(2))(2)}] (3), [fcSi{C[triple chemical bond]CCH(2)N(SiMe(2)CH(2))(2)}(2)] (10), [fcSiMe(C[triple chemical bond]CCH(2)NMe(2))] (14), and [fcSiMe(p-C(6)H(4)CH(2)NMe(2))] (20) yielded the corresponding polyferrocenylsilanes [(fcSiMe{C[triple chemical bond]CCH(2)N(SiMe(2)CH(2))(2)})(n)](5), [(fcSi{C[triple chemical bond]CCH(2)N(SiMe(2)CH(2))(2)}(2))(n)] (11), [{fcSiMe(C[triple chemical bond]CCH(2)NMe(2))}(n)] (15), and [{fcSiMe(p-C(6)H(4)CH(2)NMe(2))}(n)] (21) with controlled architectures. Further derivatization of 5, 15, and 21 generated water-soluble polyelectrolytes [(fcSiMe{C[triple chemical bond]CCH(2)N(CH(2)CH(2)CH(2)SO(3)Na)(2)})(n)] (6), [{fcSiMe(C[triple chemical bond]CCH(2)NMe(3)OSO(3)Me)}(n)] (7), and [{fcSiMe(p-C(6)H(4)CH(2)NMe(3)OSO(3)Me)}(n)] (22), respectively. The polyelectrolytes were readily soluble in water and NaCl aqueous solutions, with 6 and 22 exhibiting long-term stability in aqueous media. The PFS materials 6 and 22, have been utilized in the layer-by-layer (LbL) self-assembly of electrostatic superlattices. Our preliminary studies have indicated that films made from controlled low molecular-weight PFSs possess a considerably thinner bilayer thickness and higher refractive index than those made from PFSs that have an uncontrolled high molecular-weight. These results suggest that the structure and optical properties of LbL ultra-thin films can be tuned by varying polyelectrolyte chain length. The water-soluble low molecular weight PFSs are also useful materials for a range of applications including LbL self-assembly in highly confined spaces.  相似文献   

15.
The synthesis of the following crystalline complexes is described: [Li(L)(thf)2] (), [Li(L)(tmeda)] (), [MCl2(L)] [M=Al (), Ga ()], [In(Cl)(L)(micro-Cl)2Li(OEt2)2] (), [In(Cl)(L){N(H)C6H3Pri(2)-2,6}] (), [In(L){N(H)C6H3Pri(2)-2,6}2] (), [{In(Cl)(L)(micro-OH)}2] (), [L(Cl)In-In(Cl)(L)] () (the thf-solvate, the solvate-free and the hexane-solvate), [{In(Cl)L}2(micro-S)] () and [InCl2(L)(tmeda)] () ([L]-=[{N(C6H3Pri(2)-2,6)C(H)}2CPh]-). From H(L) (), via Li(L) in Et2O, and thf, tmeda, AlCl3, GaCl3 or InCl3 there was obtained , , , or , respectively in excellent yield. Compound was the precursor for each of , and [{InCl3(tmeda)2{micro-(OSnMe2)2}}] () by treatment with one () or two () equivalents of K[N(H)(C6H3Pri(2)-2,6)], successively Li[N(SiMe3)(C6H3Pri(2)-2,6)] and moist air (), Na in thf (), tmeda (), or successively tmeda and Me3SnSnMe3 (). Crystals of (with an equivalent of In) and were obtained from InCl or thermolysis of [In(Cl)(L){N(SiMe3)(C6H3Pri(2)-2,6)}] () {prepared in situ from and Li[N(SiMe3)(C6H3Pri(2)-2,6)] in Et2O}, respectively. Compound was obtained from a thf solution of and sulfur. X-Ray data for crystalline , , , , , and are presented. The M(L) moiety in each (not the L-free ) has the monoanionic L ligated to the metal in the N,N'-chelating mode. The MN1C1C2C3N2 six-membered M(L) ring is pi-delocalised and has the half-chair (, and ) or boat (, and ) conformation.  相似文献   

16.
The tetracyclic dilithio-Si,Si'-oxo-bridged bis(N,N'-methylsilyl-beta-diketiminates) 2 and 3, having an outer LiNCCCNLiNCCCN macrocycle, were prepared from [Li{CH(SiMe(3))SiMe(OMe)(2)}](infinity) and 2 PhCN. They differ in that the substituent at the beta-C atom of each diketiminato ligand is either SiMe(3) (2) or H (3). Each of and has (i) a central Si-O-Si unit, (ii) an Si(Me) fragment N,N'-intramolecularly bridging each beta-diketiminate, and (iii) an Li(thf)(2) moiety N,N'-intermolecularly bridging the two beta-diketiminates (thf = tetrahydrofuran). Treatment of [Li{CH(SiMe(3))(SiMe(2)OMe)}](8) with 2Me(2)C(CN)(2) yielded the amorphous [Li{Si(Me)(2)((NCR)(2)CH)}](n) [R = C(Me)(2)CN] (4). From [Li{N(SiMe(3))C(Bu(t))C(H)SiMe(3)}](2) (A) and 1,3- or 1,4-C(6)H(4)(CN)(2), with no apparent synergy between the two CN groups, the product was the appropriate (mu-C(6)H(4))-bis(lithium beta-diketiminate) 6 or 7. Reaction of [Li{N(SiMe(3))C(Ph)=C(H)SiMe(3)}(tmeda)] and 1,3-C(6)H(4)(CN)(2) afforded 1,3-C(6)H(4)(X)X' (X =CC(Ph)N(SiMe3)Li(tmeda)N(SiMe3)CH; X' = CN(SiMe3)Li(tmeda)NC(Ph)=C(H)SiMe3)(9). Interaction of A and 2[1,2-C(6)H(4)(CN)(2)] gave the bis(lithio-isoindoline) derivative [C6H4C(=NH)N{Li(OEt2)}C=C(SiMe3)C(Bu(t))=N(SiMe3)]2 (5). The X-ray structures of 2, 3, 5 and 9 are presented, and reaction pathways for each reaction are suggested.  相似文献   

17.
Na[cyclo-(P(5)tBu(4))] (1) reacts with [NiCl(2)(PEt(3))(2)] and [PdCl(2)(PMe(2)Ph)(2)] with elimination of tBuCl and formation of the corresponding metal(0) cyclopentaphosphene complexes [Ni{cyclo-(P(5)tBu(3))}(PEt(3))(2)] (2) and [Pd{cyclo-(P(5)tBu(3))}(PMe(2)Ph)(2)] (3). In contrast, complexes with the more labile triphenylphosphane ligand, such as [MCl(2)(PPh(3))(2)] (M=Ni, Pd), react with 1 with formation of [NiCl{cyclo-(P(5)tBu(4))}(PPh(3))] (4) and [Pd{cyclo-(P(5)tBu(4))}(2)] (5), respectively, in which the cyclo-(P(5)tBu(4)) ligand is intact. In the case of palladium, the cyclopentaphosphene complex [Pd{cyclo-(P(5)tBu(3))}(PPh(3))(2)] (6) in trace amounts is also formed. However, [Ni{cyclo-(P(5)tBu(4))}(2)] (7) is easily obtained by reaction of two equivalents of 1 and one equivalent of [NiCl(2)(bipy)] at room temperature. Complex 7 rearranges on heating in n-hexane or toluene to the previously unknown [Ni{cyclo-(P(5)tBu(4))PtBu}{cyclo-(P(4)tBu(3))}] (8), which presumably is formed via the intermediate [Ni{cyclo-(P(5)tBu(4))}{cyclo-(P(4)tBu(3))PtBu}], which, after an unexpected and unprecedented phosphanediide migration, gives 8, but always as an inseparable mixture with 7. In the reaction of 1 with [PtCl(2)(PPh(3))(2)], ring contraction and formation of [PtCl{cyclo-(P(4)tBu(3))PtBu}(PMe(2)Ph)] (9) is observed. Complexes 3-5 and 7-9 were characterised by (31)P NMR spectroscopy, and X-ray structures were obtained for 5-9.  相似文献   

18.
Neutral zinc, cadmium, mercury(II), and ethylmercury(II) complexes of a series of phosphinothiol ligands, PhnP(C6H3(SH-2)(R-3))3-n (n = 1, 2; R = H, SiMe3) have been synthesized and characterized by IR and NMR ((1)H, (13)C, and (31)P) spectroscopy, FAB mass spectrometry, and X-ray structural analysis. The compounds [Zn{PhP(C6H4S-2)2}] (1) and [Cd{Ph2PC6H4S-2}2] (2) have been synthesized by electrochemical oxidation of anodic metal (zinc or cadmium) in an acetonitrile solution of the appropriate ligand. The presence of pyridine in the electrolytic cell affords the mixed complexes [Zn{PhP(C6H4S-2)2}(py)] (3) and [Cd{PhP(C6H4S-2)2}(py)] (4). [Hg{Ph2PC6H4S-2}2] (5) and [Hg{Ph2PC6H3(S-2)(SiMe3-3)}2] (6) were obtained by the addition of the appropriate ligand to a solution of mercury(II) acetate in methanol in the presence of triethylamine. [EtHg{Ph2PC6H4S-2}] (7), [EtHg{Ph2P(O)C6H3(S-2)(SiMe3-3)}] (8), [{EtHg}2{PhP(C6H4S-2)2}] (9), and [{EtHg}2{PhP(C6H3(S-2)(SiMe3-3))2}] (10) were obtained by reaction of ethylmercury(II) chloride with the corresponding ligand in methanol. In addition, in the reactions of EtHgCl with Ph2PC6H4SH-2 and with the potentially tridentate ligand PhP(C6H3(SH-2)(SiMe3-3)) 2, cleavage of the Hg-C bond was observed with the formation of [Hg{Ph2PC6H4S-2}2] (5) and [Hg(EtHg) 2{PhP(O)(C6H3(S-2)(SiMe3-3))2}2] (11), respectively, and the corresponding hydrocarbon. The crystal structures of [Zn3{PhP(C6H4S-2)2}2{PhP(O)(C6H4S-2)2}] (1*), [Cd2{Ph2PC6H4S-2}3{Ph2P(O)C6H4S-2}] (2*), 3, 5, 6, [EtHg{Ph2P(O)C6H4S-2}] (7*), 8, 9, [{EtHg}2{PhP(O)(C6H3(S-2)(SiMe3-3))2}] (10*), and 11 are discussed. The molecular structures of 1, 2, 4, 7, and 10 have also been studied by means of density functional theory (DFT) calculations.  相似文献   

19.
Treatment of IrCl(3)x H(2)O with one equivalent of 4,4'-di-tert-butyl-2,2'-bipyridyl (dtbpy) in N,N-dimethylformamide (dmf) afforded [IrCl(3)(dmf)(dtbpy)] (1). Alkylation of 1 with Me(3)SiCH(2)MgCl resulted in C--Si cleavage of the Me(3)SiCH(2) group and formation of the Ir(III) silyl dialkyl compound [Ir(CH(2)SiMe(3))(dtbpy)(Me)(SiMe(3))] (2), which reacted with tBuNC to afford [Ir(tBuNC)(CH(2)SiMe(3))(dtbpy)(Me)(SiMe(3))] ([2(tBuNC)]). Reaction of 2 with phenylacetylene afforded dimeric [{Ir(C[triple chemical bond]CPh)(dtbpy)(SiMe(3))}(2)(mu-C[triple chemical bond]CPh)(2)] (3), in which the bridging PhC[triple chemical bond]C(-) ligands are bound to Ir in a mu-sigma:pi fashion. Alkylation of 1 with PhMe(2)CCH(2)MgCl afforded the cyclometalated compound [Ir(dtbpy)(CH(2)CMe(2)C(6)H(4))(2-C(6)H(4)CMe(3))] (4), which features an agostic interaction between the Ir center and the 2-tert-butylphenyl ligand. The cyclic voltammogram of 4 in CH(2)Cl(2) shows a reversible Ir(IV)-Ir(III) couple at about 0.02 V versus ferrocenium/ferrocene. Oxidation of 4 in CH(2)Cl(2) with silver triflate afforded an Ir(IV) species that exhibits an anisotropic electron paramagnetic resonance (EPR) signal in CH(2)Cl(2) glass at 4 K with g( parallel)=2.430 and g( perpendicular)=2.110. Protonation of 4 with HCl and p-toluenesulfonic acid (HOTs) afforded [{Ir(dtbpy)(CH(2)CMe(2)Ph)Cl}(2)(mu-Cl)(2)] (5) and [Ir(dtbpy)(CH(2)CMe(2)Ph)(OTs)(2)] (6), respectively. Reaction of 5 with Li[BEt(3)H] gave the cyclometalated complex [{Ir(dtbpy)(CH(2)CMe(2)C(6)H(4))}(2)(mu-Cl)(2)] (7). Reaction of 4 with tetracyanoethylene in refluxing toluene resulted in electrophilic substitution of the iridacycle by C(2)(CN)(3) with formation of [Ir(dtbpy)(CH(2)CMe(2)C(6)H(3){4-C(2)(CN)(3)})(2-C(6)H(4)CMe(3))] (8). Reaction of 4 with diethyl maleate in refluxing toluene gave the iridafuran compound [Ir(dtbpy)(CH(2)CMe(2)C(6)H(4)){kappa(2)(C,O)-C(CO(2)Et)CH(CO(2)Et)}] (9). Treatment of 9 with 2,6-dimethylphenyl isocyanide (xylNC) led to cleavage of the iridafuran ring and formation of [Ir(dtbpy)(CH(2)CMe(2)C(6)H(4)){C(CO(2)Et)CH(CO(2)Et)}(xylNC)] (10). Protonation of 9 with HBF(4) afforded the dinuclear neophyl complex [(Ir(dtbpy)(CH(2)CMe(2)Ph){kappa(2)(C,O)-C(CO(2)Et)CH(CO(2)Et)})(2)][BF(4)](2) (11). The solid-state structures of complexes 2-5 and 8-11 have been determined.  相似文献   

20.
Niemeyer M 《Inorganic chemistry》2006,45(22):9085-9095
The scope of hypersilyl potassium, KHyp [Hyp = Si(SiMe3)3], as a silylation or deprotonation agent for some rare-earth bis(trimethylsilyl)amides has been explored. Thus, the reaction with Yb{N(SiMe3)2}2 affords the addition product [K][YbHyp{N(SiMe3)2}2] (2) in high yield, which contains a three-coordinate ytterbium atom, therefore representing the first example of a lanthanide silyl with a coordination number lower than 6. In contrast, deprotonation on the periphery is observed with the tris(amides) Ln{N(SiMe3)2}3 (Ln = Y, Yb) and compounds of the type [K][CH2Si(Me)2N(SiMe3)Ln{N(SiMe3)2}2] (Ln = Y (3), Yb (4)) are isolated. Crystallization of 3 from a mixture of benzene and heptane afforded the bis(benzene) solvate [(C6H6)2K][CH2Si(Me)2N(SiMe3)Y{N(SiMe3)2}2] (3a). The reaction between the strong bases nBuLi/tetramethylenediamine (TMEDA) or tBuLi with Y{N(SiMe3)2}3 or Yb{N(SiMe3)2}3 yielded the deprotonation product [(tmeda)Li][CH2Si(Me)2N(SiMe3)Y{N(SiMe3)2}2] (6) and the reduction product [LiYb{N(SiMe3)2}3] (7), respectively. Instead of the expected bimetallic product, the reaction between YbI(2) and 2 equiv of 3 gave the neutral complex [Y{CH2Si(Me)2N(SiMe3)}{N(SiMe3)2}(thf)] (8) in good yield. The compounds have been characterized by melting point, elemental analysis, IR spectroscopy, and X-ray crystallography and for selected species by 1H, 13C, 29Si, and 171Yb NMR spectroscopy. For 3a and 4, the nature of the bonding between the carbanionic centers and the lanthanide and potassium cations was studied by density functional theory calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号