首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both (PNP)Re(H)(4) and (PNP)ReH(cyclooctyne) (PNP(i)(Pr) = ((i)Pr(2)PCH(2)SiMe(2))(2)N) react with alkylpyridines NC(5)H(4)R to give first (PNP)ReH(2)(eta(2)-pyridyl) and cyclooctene and then, when not sterically blocked, (PNP)Re(eta(2)-pyridyl)(2) and cyclooctane. The latter are shown by NMR, X-ray diffraction, and DFT calculations to have several energetically competitive isomeric structures and pyridyl N donation in preference to PNP amide pi-donation. DFT studies support NMR solution evidence that the most stable bis pyridyl structure is one that is doubly eta(2)- with the pyridyl N donating to the metal center. When both ortho positions carry methyl substituents, cyclooctane and the carbyne complex (PNP)ReH(tbd1;C-pyridyl) are produced. Excess 2-vinyl pyridine reacts with (PNP)Re(H)(4) preferentially at the vinyl group, to give 2-ethyl pyridine and the sigma-vinyl complex (PNP)ReH[eta(2)-CH=CH(2-py)]. The DFT and X-ray structures show, by various comparisons, the ability of the PNP amide nitrogen to pi-donate to an otherwise unsaturated d(4) Re(III) center, showing short Re-N distances consistent with the presence of pi-donation.  相似文献   

2.
The concerned azoles are 2-(2-pyridyl)benzoxazole (pbo) and 2-(2-pyridyl)benzthiazole (pbt). These react with ReOCl(3)(PPh(3))(2) in benzene, affording Re(V)OCl(3)(pbo) and Re(V)OCl(3)(pbt), which undergo facile oxygen atom transfer to PPh(2)R (R = Ph, Me) in dichloromethane solution, furnishing Re(III)(OPPh(2)R)Cl(3)(pbo) and Re(III)(OPPh(2)R)Cl(3)(pbt). The oxo species react with aniline in toluene solution, yielding the imido complexes Re(V)(NPh)Cl(3)(pbo) and Re(V)(NPh)Cl(3)(pbt). The X-ray structures of pbt, ReOCl(3)(pbt), Re(OPPh(3))Cl(3)(pbt), and Re(NPh)Cl(3)(pbo) are reported. The lattice of pbt consists of stacked dimers. In all the complexes the azole ligand is N,N-chelated and the ReCl(3) moiety is meridionally disposed. In ReOCl(3)(pbt) the metal-oxo bond length is 1.607(9) A. The second-order rates and the associated activation parameters of the oxygen atom transfer reactions of the Re(V)O chelates with PPh(2)R are reported. The large and negative entropy of activation (approximately -24 eu) is consistent with an associative pathway involving nucleophilic phosphine attack. The rate increases with phosphine basicity (PPh(2)Me > PPh(3)) and azole heteroatom electronegativity (O(pbo) > S(pbt)). Logarithmic rate constants for ReOCl(3)(pbo), ReOCl(3)(pbt), and ReOCl(3)(pal) are found to correlate linearly with Re(VI)O/Re(V)O reduction potentials (pal is pyridine-2-(N-p-tolyl)aldimine). The relatively low rate constant of ReOCl(3)(pbt) compared to that of ReOCl(3)(pal) is consistent with the observed shortness of the metal-oxo bond in the former. Crystal data are as follows: (pbt) empirical formula C(12)H(8)N(2)S, crystal system orthorhombic, space group Pca2(1), a = 13.762(9) A, b = 12.952(8) A, c = 11.077(4) A, V = 1974(2) A(3), Z = 8; (ReOCl(3)(pbt)) empirical formula C(12)H(8)Cl(3)N(2)OSRe, crystal system monoclinic, space group P2(1)/c, a = 11.174(7) A, b = 16.403(10) A, c = 7.751(2) A, beta = 99.35(4) degrees, V = 1401.8(13) A(3), Z = 4; (Re(NPh)Cl(3)(pbo)) empirical formula C(18)H(13)Cl(3)N(3)ORe, crystal system monoclinic, space group P2(1)/c, a = 9.566(6) A, b = 16.082(8) A, c = 11.841(5) A, beta = 94.03(4) degrees, V = 1817(2) A(3), Z = 4.  相似文献   

3.
Operationally unsaturated (i.e., 16/18-electron) (PNPR)Re(H)4, where PNPR is N(SiMe2CH2PR2)2, is reactive at 22 degrees C with cyclic olefins. The first observed products are generally (PNPR)Re(H)2(cycloalkylidene), with hydrogenated olefin as the product of hydrogen abstraction from the tetrahydride. The tetrahydride complex with R = tBu generally fails to react (too bulky), that with R = cyclohexyl suffers a (controllable) tendency to abstraction of 3H from one ring, forming an eta3-cyclohexenyl compound, and that with R = iPr generally gives the richest bimolecular reactivity. The cyclic monoolefins studied show distinct reactivity, C6 giving first the carbene and then coordinated cyclohexadiene, C5 giving carbene, then diene, and then eta5-C5H5, C8 giving carbene and then eta2-cyclooctyne, and C12 giving an eta3-allyl. Norbornene gives a pi-complex of the norbornene in thermal equilibrium with its carbene isomer; at 90 degrees C, hydrocarbon ligand Calpha-Cbeta bond cleavage occurs to give, for the first time, a carbyne complex from an internal olefin. Two compounds synthesized here have the formal composition "(PNPR)Re + olefin", and each of these is capable of dehydrogenating the methyl group of a variety of alkanes at 110 degrees C to form (PNP)ReH triple bond (CR).  相似文献   

4.
N-[(Dialkylamino)(thiocarbonyl)]benzimidoyl chlorides react with functionalized amines such as 2-aminophenol, 2-methylaminopyridine, and 2-aminobenzoic acid in clean and high-yield procedures with the formation of the novel tridentate N-[(N', N'-dialkylamino)(thiocarbonyl)]- N'-substituted benzamidine ligands H2L1, HL2, and H2L3. By starting from (NBu4)[MOCl4] (M = Re, Tc) or [ReOCl3(PPh3)2] and H2L1, a series of oxorhenium(V) and oxotechnetium(V) complexes of the composition [MOCl(L1)] were synthesized and characterized by spectroscopic methods and X-ray crystallography. The monomeric, five-coordinate compounds are air-stable and bind (L1)(2-) tridentate in the equatorial coordination sphere. Dimeric products of the compositions [(ReOCl(L2))2O] and [ReOCl(L3)]2 were isolated during reactions with HL2 and H2L3. While dimerization in [(ReOCl(L2))2O] is established via an oxo bridge, the metal atoms in [ReOCl(L3)]2 are connected by the carboxylic group of the ligand, and the product represents the first example of a high-oxidation state rhenium complex displaying such a bonding feature.  相似文献   

5.
Reaction of the amido complex (eta(5)-C(5)H(5))Re(NO)(PPh(3))(&Numl;H(2)) (2) and hexafluoroacetone gives the methyleneamido complex (eta(5)-C(5)H(5))Re(NO)(PPh(3))(&Numl;=C(CF(3))(2)) (3, 58%). Addition of TfOH to 3 yields the sigma-imine complex [(eta(5)-C(5)H(5))Re(NO)(PPh(3))(eta(1)-N(H)=C(CF(3))(2))](+)TfO(-) (4, 96%). Similar reactions of 2 with trifluoroacetaldehyde and then TfOH give the sigma-imine complex [(eta(5)-C(5)H(5))Re(NO)(PPh(3))(eta(1)-N(H)=C(CF(3))H)](+)TfO(-) (5, 78%) and sometimes small amounts of the corresponding pi-trifluoroacetaldehyde complex. Reaction of 5 and t-BuO(-)K(+) gives the methyleneamido complex (eta(5)-C(5)H(5))Re(NO)(PPh(3))(&Numl;=C(CF(3))H) (6, 82%). The IR and NMR properties of 3-6 are studied in detail. The (13)C NMR spectra show C=N signals (157-142 ppm) diagnostic of sigma-binding modes. No evidence is observed for pi isomers of 4 or 5. Analogous O=C(CF(3))X complexes give exclusively pi isomers, and rationales are discussed. Reactions of 3or 6 with MeOTf and heteroatom electrophiles are also described.  相似文献   

6.
Decaborane(14) reacts with 1-(CH(3))(3)SiC&tbd1;CC(4)H(9) in the presence of dimethyl sulfide to give the new alkenyldecaborane 5-(S(CH(3))(2))-6-[(CH(3))(3)Si(C(4)H(9))C=CH]B(10)H(11) (I). Crystal data for 5-(S(CH(3))(2))-6-[(CH(3))(3)Si(C(4)H(9))C=CH]B(10)H(11): space group P2(1)/n, monoclinic, a = 9.471(1) ?, b = 13.947(3) ?, c = 17.678(3) ?, beta = 100.32(1) degrees. A total of 3366 unique reflections were collected over the range 2.0 degrees /= 3sigma(F(o)(2)) and were used in the final refinement. R(F)() = 0.083; R(w)(F)() = 0.094. The single-crystal X-ray structure of 5-(S(CH(3))(2))-6-[((CH(3))(3)Si)(2)C=CH]B(10)H(11) (A) is also reported. Crystal data for 5-(S(CH(3))(2))-6-[((CH(3))(3)Si)(2)C=CH]B(10)H(11): space group, P2(1)2(1)2(1), orthorhombic, a = 9.059 (3) ?, b = 12.193(4) ?, c = 21.431(3) ?. A total of 4836 unique reflections were collected over the range 6 degrees /= 3sigma(F(o)(2)) and were used in the final refinement. R(F)() = 0.052; R(w)(F)() = 0.059. The reactions of 5-(S(CH(3))(2))6-[(CH(3))(3)Si(C(4)H(9))C=CH]B(10)H(11) and 5-(S(CH(3))(2))6-[((CH(3))(3)Si)(2)C=CH]B(10)H(11) with a variety of alkyl isocyanides were investigated. All of the alkenyl monocarbon carboranes reported are the result of incorporation of the carbon atom from the isocyanide into the alkenyldecaborane framework and reduction of N&tbd1;C bond to a N-C single bond. The characterization of these compounds is based on (1)H and (11)B NMR data, IR spectroscopy, and mass spectrometry.  相似文献   

7.
The reaction of (R(2)PCH(2)SiMe(2))(2)NM (PNP(R)M; R = Cy; M = Li, Na, MgHal, Ag) with L(2)ReOX(3) [L(2) = (Ph(3)P)(2) or (Ph(3)PO)(Me(2)S); X = Cl, Br] gives (PNP(Cy))ReOX(2) as two isomers, mer,trans and mer,cis. These compounds undergo a double Si migration from N to O at 90 degrees C to form (POP(Cy))ReNX(2) as a mixture of mer,trans and fac,cis isomers. Additional thermolysis effects migration of CH(3) from Si to Re, along with compensating migration of halide from Re to Si. DFT calculations on various structural isomers support the greater thermodynamic stability of the POP/ReN isomer vs PNP/ReO and highlight the influence of the template effect on the reactivities of these species.  相似文献   

8.
Reaction of the vanadium(V) imide [V(NAr)Cl(3)(THF)] (Ar = 2,6-C(6)H(3)(i)()Pr(2)) with the diamino-pyridine derivative MeC(2-C(5)H(4)N)(CH(2)NHSiMe(2)(t)()Bu)(2) (abbreviated as H(2)N'(2)N(py)) gave modest yields of the vanadium(IV) species [V(NAr)(H(3)N'N' 'N(py))Cl(2)] (1 where H(3)N'N' 'N(py) = MeC(2- C(5)H(4)N)(CH(2)NH(2))(CH(2)NHSiMe(2)(t)()Bu) in which the original H(2)N'(2)N(py) has effectively lost SiMe(2)(t)()Bu (as ClSiMe(2)(t)()Bu) and gained an H atom. Better behaved reactions were found between the heavier Group 5 metal complexes [M(NR)Cl(3)(py)(2)] (M = Nb or Ta, R = (t)()Bu or Ar) and the dilithium salt Li(2)[N(2)N(py)] (where H(2)N(2)N(py) = MeC(2-C(5)H(4)N)(CH(2)NHSiMe(3))(2)), and these yielded the six-coordinate M(V) complexes [M(NR)Cl(N(2)N(py))(py)] (M = Nb, R = (t)()Bu 2; M = Ta, R = (t)()Bu 3 or Ar 4). The compounds 2-4 are fluxional in solution and undergo dynamic exchange processes via the corresponding five-coordinate homologues [M(NR)Cl(N(2)N(py))]. Activation parameters are reported for the complexes 2 and 3. In the case of 2, high vacuum tube sublimation afforded modest quantities of [Nb(N(t)()Bu)Cl(N(2)N(py))] (5). The X-ray crystal structures of the four compounds 1, 2, 3, and 4 are reported.  相似文献   

9.
A number of Re complexes with N,N'-bis(2-pyridylmethyl)ethylenediamine (H2pmen) have been made from [NH4][ReO4]. [ReOCl2(H2pmen)]Cl, [ReOCl(Hpmen)][ReO4], and [ReO2(H2pmen)][ReO4] are related by hydrolysis/HCl substitution. [ReOCl(Hpmen)][ReO4] was structurally characterized and found to contain a water-stable amido-Re bond. Dehydrogenation of the N-donor ligand from each amine to imine with concomitant two-electron reduction of the Re center occurs readily in these systems. With suitable 3-hydroxy-4-pyrones, ternary complexes such as [ReIIICl(ma)(C14H14N4)][ReO4].CH3OH, 5, were made from [NH4][ReO4], H2pmen.4HCl and pyrones in one-pot syntheses. 5, a seven-coordinate ReIII complex, was structurally characterized.  相似文献   

10.
The green colored complexes of the type Re(V)O(L(SB))Cl(2), 1, have been synthesised by reacting NBu(4)[ReOCl(4)] with HL(SB) in dry ethanol. Here, L(SB)(-) are the deprotonated forms of N-(2-hydroxybenzyl)-2-picolylamine (HL(SB)(1)); N-(2-hydroxybenzyl)-N',N'-dimethylethylenediamine (HL(SB)(2)) and N-(2-hydroxybenzyl)-N',N'-diethylethylenediamine (HL(SB)(3)). Similarly, NBu(4)[ReOCl(4)] reacted with N,N-bis(2-hydroxybenzyl)-2-picolylamine (H(2)L(1)); N,N-bis(2-hydroxybenzyl)-N',N'-dimethylethylenediamine (H(2)L(2)); N,N-bis(2-hydroxybenzyl)-N',N'-diethylethylenediamine (H(2)L(3)); [N-(2-hydroxybenzyl)-N-(2-pyridylmethyl)]-2-aminoethanol (H(2)L(4)); [N-(2-hydroxybenzyl)-N-(2-pyridylmethyl)]-2-methyl-2-amino-1-propanol (H(2)L(5)); N,N-bis(1-hydroxyethyl)-2-picolylamine (H(2)L(6)), to give the monochloro complexes Re(V)O(L)Cl, 2. The X-ray structures of the complexes are reported. The molecular structures observed in the solid state are preserved in solution ((1)H NMR). In acetonitrile solution the Re(V)O(L)Cl, 2, display a one-electron couple, Re(VI)O(L)Cl(+)-Re(V)O(L)Cl, near 1.0 V vs SCE. The electrogenerated hexavalent complexes [Re(VI)O(L)Cl]ClO(4), 3, are paramagnetic and display sextet EPR spectra in solution at room temperature (A(av) approximately 417 (G), g approximately 1.914).  相似文献   

11.
The bis(benzene-o-dithiol) ligands H(4)-1, H(4)-2, and H(4)-3 react with [Ti(OC(2)H(5))(4)] to give dinuclear triple-stranded helicates [Ti(2)L(3)](4)(-) (L = 1(4)(-), 2(4)(-), 3(4)(-)). NMR spectroscopic investigations revealed that the complex anions possess C(3) symmetry in solution. A crystal structure analysis for (PNP)(4)[Ti(2)(2)(3)] ((PNP)(4)[14]) confirmed the C(3) symmetry for the complex anion in the solid state. The complex anion in Li(PNP)(3)[Ti(2)(1)(3)] (Li(PNP)(3)[13]) does not exhibit C(3) symmetry in the solid state due to the formation of polymeric chains of lithium bridged complex anions. Complexes [13](4)(-) and [14](4)(-) were obtained as racemic mixtures of the Delta,Delta and Lambda,Lambda isomers. In contrast to that, complex (PNP)(4)[Ti(2)(3)(3)] ((PNP)(4)[15]) with the enantiomerically pure chiral ligand 3(4)(-) shows a strong Cotton effect in the CD spectrum, indicating that the chirality of the ligands leads to the formation of chiral metal centers. The o-phenylene diamine bridged bis(benzene-o-dithiol) ligand H(4)-4 reacts with Ti(4+) to give the dinuclear double-stranded complex Li(2)[Ti(2)(4)(2)(mu-OCH(3))(2)] containing two bridging methoxy ligands between the metal centers. The crystal structure analysis and the (1)H NMR spectrum of (Ph(4)As)(2)[Ti(2)(4)(2)(mu-OCH(3))(2)] ((Ph(4)As)(2)[(16]) reveal C(2) symmetry for the anion [Ti(2)(4)(2)(mu-OCH(3))(2)](2)(-). For a comparative study the dicatechol ligand H(4)-5, containing the same o-phenylene diamine bridging group as the bis(benzene-o-dithiol) ligands H(4)-4, was prepared and reacted with [TiO(acac)(2)] to give the dinuclear complex anion [Ti(2)(5)(2)(mu-OCH(3))(2)](2)(-). The molecular structure of (PNP)(2)[Ti(2)(5)(2)(mu-OCH(3))(2)] ((PNP)(2)[17]) contains a complex anion which is similar to [16](2)(-), with the exception that strong N-H...O hydrogen bonds are formed in complex anion [17](2)(-), while N-H...S hydrogen bonds are absent in complex anion [16](2)(-).  相似文献   

12.
[{mu-(Pyridazine-N(1):N(2))}Fe(2)(mu-CO)(CO)(6)](1) reacts with aryllithium reagents, ArLi (Ar = C(6)H(5), m-CH(3)C(6)H(4)) followed by treatment with Me(3)SiCl to give the novel pyridazine-coordinated diiron bridging siloxycarbene complexes [(C(4)H(4)N(2))Fe(2){mu-C(OSiMe(3))Ar}(CO)(6)](2, Ar = C(6)H(5); 3, Ar =m-CH(3)C(6)H(4)). Complex 2 reacts with HBF(4).Et(2)O at low temperature to yield a cationic bridging carbyne complex [(C(4)H(4)N(2))Fe(2)(mu-CC(6)H(5))(CO)(6)]BF(4)(4). Cationic 4 reacts with NaBH(4) in THF at low temperature to afford the diiron bridging arylcarbene complex [(C(4)H(4)N(2))Fe(2){mu-C(H)C(6)H(5)}(CO)(6)](5). Unexpectedly, the reaction of 4 with NaSCH(3) under similar conditions gave the bridging arylcarbene complex 5 and a carbonyl-coordinated diiron bridging carbene complex [Fe(2){mu-C(SCH(3))C(6)H(5)}(CO)(7)](6), while the reaction of NaSC(6)H(4)CH(3)-p with 4 affords the expected bridging arylthiocarbene complex [(C(4)H(4)N(2))Fe(2){mu-C(SC(6)H(4)CH(3)-p)C(6)H(5)}(CO)(6)](7), which can be converted into a novel diiron bridging carbyne complex with a thiolato-bridged ligand, [Fe(2)(mu-CC(6)H(5))(mu-SC(6)H(4)CH(3)-p)(CO)(6)](8). Cationic can also react with the carbonylmetal anionic compound Na(2)[Fe(CO)(4)] to yield complex 5, while the reactions of 4 with carbonylmetal anionic compounds Na[M(CO)(5)(CN)](M = Cr, Mo, W) produce the diiron bridging aryl(pentacarbonylcyanometal)carbene complexes [(C(4)H(4)N(2))Fe(2)-{mu-C(C(6)H(5))NCM(CO)(5)}(CO)(6)](9, M = Cr; 10, M = Mo; 11, M = W). The structures of complexes 2, 5, 6, 8, and 9 have been established by X-ray diffraction studies.  相似文献   

13.
Rhenium and technetium complexes with N,N-dialkyl-N'-benzoylthioureas   总被引:1,自引:0,他引:1  
Nguyen HH  Abram U 《Inorganic chemistry》2007,46(13):5310-5319
N,N-Dialkyl-N'-benzoylthioureas, HR(1)R(2)btu, react under single deprotonation and form air-stable chelate complexes with common rhenium or technetium complexes such as (NBu(4))[MOCl(4)] (M = Re, Tc) or [ReOCl(3)(PPh(3))(2)]. Compositions and molecular structures of the products are strongly dependent on the precursors used and the reaction conditions applied. Reactions with [ReOCl(3)(PPh(3))(2)] in CH(2)Cl(2) give complexes of the general formula [ReOCl(2)(R(1)R(2)btu)(PPh(3))] (3), with the benzoyl oxygen atom of the chelating benzoylthiourea being trans to the oxo ligand, and/or Re(III) complexes of the composition [ReCl(2)(R(1)R(2)btu)(PPh(3))(2)] (4) with the PPh(3) ligands in trans positions to each other. In polar solvents such as MeOH, EtOH or acetone, corresponding reactions without addition of a supporting base only result in intractable brown solutions, from which no crystalline complexes could be isolated. The addition of NEt(3), however, allows the isolation of the bis-chelates [ReOCl(R(1)R(2)btu)(2)] (1) in good yields. In this type of complex, one of the chelating R(1)R(2)btu- ligands coordinates equatorially, while the second occupies the position trans to the oxo ligand with its oxygen atom. The latter compounds can also be prepared from (NBu(4))[ReOCl(4)] in MeOH when no base is added, while the addition of NEt(3) results in the formation of [ReO(OMe)(R(1)R(2)btu)(2)] (5) complexes with the methoxo ligand trans to O(2-). Compounds of the type 5 can alternatively be prepared by heating 1 in MeOH with addition of NEt(3). A reversible conversion of 5 into oxo-bridged dimers of the composition [{ReO(R(1)R(1)btu)(2)}(2)O] (6) is observed in water-containing solvents. Starting from (NBu(4))[TcOCl(4)], a series of technetium complexes of the type [TcOCl(R(1)R(2)btu)(2)] (2) could be prepared. The structures of such compounds are similar to those of the rhenium analogues 1. Reduction of 2 with PPh(3) in CH(2)Cl(2) gives Tc(III) complexes of the composition [TcCl(R(1)R(2)btu)(2)(PPh(3))] (7) having the chloro and PPh(3) ligands in cis positions. When this reaction is performed in the presence of excess chelating ligand, the Tc(III) tris-chelates [Tc(R(1)R(2)btu)(3)] (8) are formed.  相似文献   

14.
Air-stable rhenium(V) oxo complexes are formed when [ReOCl(3)(PPh(3))(2)] is treated with N-heterocyclic carbenes of the 1,3-dialkyl-4,5-dimethylimidazol-2-ylidene type, L(R) (R = Me, Et, i-Pr). Complexes of the compositions [ReO(2)(L(R))(4)](+), [ReOCl(L(R))(4)](2+), or [ReO(OMe)(L(R))(4)](2+) can be isolated depending on the alkyl substituents at the nitrogen atoms of the ligands and the reaction conditions applied. Despite the steric overcrowding of the equatorial coordination spheres of the metal atoms by each of the four carbene ligands, stable complexes with six-coordinate rhenium atoms are obtained. Steric demands of the alkyl groups allow control of the stability of the mono-oxo intermediates. Air-stable cationic complexes of the compositions [ReOCl(L(Me))(4)](2+), [ReOCl(L(Et))(4)](2+), and [ReO(OMe)(L(Me))(4)](2+) have been isolated, whereas reactions of [ReOCl(3)(PPh(3))(2)] or other rhenium(V) precursors with the more bulky 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene (L(i)(-)(Pr)) directly yield the dioxo complex [ReO(2)(L(i)(-)(Pr))(4)](+). X-ray structures of [ReO(2)(L(i)(-)(Pr))(4)][ReO(4)], [ReO(2)(L(i)(-)(Pr))(4)][PF(6)], [ReO(2)(L(Me))(4)][ReO(4)](0.45)[PF(6)](0.55), [ReO(MeOH)(L(Me))(4)][PF(6)](2), and [ReOCl(L(Et))(4)][PF(6)](2) show that the equatorial coordination spheres of the rhenium atoms are essentially planar irrespective of the steric demands of the individual carbene ligands.  相似文献   

15.
The synthesis and reactivity of a series of complexes of the (DippN=)(3)Re (Dipp = 2,6-(i)Pr(2)C(6)H(3)) fragment are reported. The anionic, Re(V) complex (THF)(2)Li(micro,micro-NDipp)(2)Re(=NDipp) (1), prepared by the reaction of (DippN=)(3)ReCl with (THF)(3)LiSi(SiMe(3))(3) or (t)BuLi (2 equiv) in the presence of THF (4 equiv), served as an important starting material for the synthesis of rhenium-element-bonded complexes. For example, treatment of 1 with ClSiR(3) gave the corresponding silyl complexes (DippN=)(3)ReSiR(3) (SiR(3) = SiMe(3) (2a), SiHPh(2) (2b), SiH(2)Ph (2c)). Complexes 2a-c are thought to exist in equilibrium between the Re(VII) (DippN=)(3)ReSiR(3) and Re(V) (DippN=)(2)ReN(SiR(3))Dipp isomers. Complexes 2a,b reacted with PhSiH(3) to give reaction mixtures that included 2c, Ph(2)SiH(2), SiH(4), and C(6)H(6). The silane and organic products arise from Si-C bond formation and cleavage. Treatment of 2a with CO gave (DippN=)(2)Re[N(SiMe(3))Dipp](CO) (3), which appears to result from trapping of the reactive Re(V) isomer of 2a by CO. Complex 1 reacted with the main group halides MeI, Ph(3)GeCl, Me(3)SnCl, Ph(2)PCl, and PhSeCl to give the corresponding rhenium complexes (DippN=)(3)ReER(n) (ER(n)() = Me (4), GePh(3) (5), SnMe(3) (6), PPh(2) (7), SePh (8)) in high yields. X-ray diffraction data for 5 indicate that the germyl ligand is bonded to rhenium, but positional disorder of the phenyl and Dipp groups prevented refinement of accurate metric parameters.  相似文献   

16.
Reactions of Re(V), tetradentate Schiff base complexes with tertiary phosphines have previously yielded both rearranged Re(V) and reduced Re(III) complexes. To further understand this chemistry, the rigid diiminediphenol (N(2)O(2)) Schiff base ligand sal(2)phen (N,N'-o-phenylenebis(salicylaldimine)) was reacted with (n-Bu(4)N)[ReOCl(4)] to yield trans-[ReOCl(sal(2)phen)] (1). On reaction with triphenylphosphine (PPh(3)), a rearranged Re(V) product cis-[ReO(PPh(3))(sal(2)phen*)]PF(6) (2), in which one of the imines was reduced to an amine during the reaction, and the reduced Re(III) products trans-[ReCl(PPh(3))(sal(2)phen)] (4) and trans-[Re(PPh(3))(2)(sal(2)phen)](+) (5) were isolated. Reaction of sal(2)phen with [ReCl(3)(PPh(3))(2)(CH(3)CN)] resulted in the isolation of [ReCl(2)(PPh(3))(2)(salphen)] (3). The compounds were characterized using standard spectroscopic methods, elemental analyses and single crystal X-ray crystallography.  相似文献   

17.
Dimerization of the alkynylcarbene complex Cp(CO)(2)Re=C(Tol)C(triple bond)CCH(3) (8) occurs at 100 degrees C to give a 1.2:1 mixture of enediyne complexes [Cp(CO)(2)Re](2)[eta(2),eta(2)-TolC(triple bond)CC(CH(3))=C(CH(3))C(triple bond)CTol] (10-Eand 10-Z), showing no intrinsic bias toward trans-enediyne complexes. The cyclopropyl-substituted alkynylcarbene complex Cp(CO)(2)Re=C(Tol)C(triple bond)CC(3)H(5) (11) dimerizes at 120 degrees C to give a 5:1 ratio of enediyne complexes [Cp(CO)(2)Re](2)[eta(2),eta(2)-TolC(triple bond)C(C(3)H(5))C=C(C(3)H(5))C(triple bond)CTol] (12-E and 12-Z); no ring expansion product was observed. This suggests that if intermediate A formed by a [1,1.5] Re shift and having carbene character at the remote alkynyl carbon is involved, then interaction of the neighboring Re with the carbene center greatly diminishes the carbene character as compared with that of free cyclopropyl carbenes. The tethered bis-(alkynylcarbene) complex Cp(CO)(2)Re=C(Tol)C(triple bond)CCH(2)CH(2)CH(2)C(triple bond)CC(Tol)= Re(CO)(2)Cp (13) dimerizes rapidly at 12 degrees C to give the cyclic cis-enediyne complex [Cp(CO)(2)Re](2)[eta(2),eta(2)-TolC(triple bond)CC(CH(2)CH(2)CH(2))=CC(triple bond)CTol] (15). Attempted synthesis of the 1,8-disubstituted naphthalene derivative 1,8-[Cp(CO)(2)Re=C(Tol)C(triple bond)C](2)C(10)H(6) (16), in which the alkynylcarbene units are constrained to a parallel geometry, leads to dimerization to [Cp(CO)(2)Re](2)(eta(2),eta(2)-1,2-(tolylethynyl)acenaphthylene] (17). The very rapid dimerizations of both 13 and 16 provide compelling evidence against mechanisms involving cyclopropene intermediates. A mechanism is proposed which involves rate-determining addition of the carbene center of A to the remote alkynyl carbon of a second alkynylcarbene complex to generate vinyl carbene intermediate C, and rearrangement of C to the enediyne complex by a [1,1.5] Re shift.  相似文献   

18.
Convenient methods to prepare solvated rhenium oxochlorides are described; these compounds should serve as useful starting materials for rhenium chemistry. Treatment of perrhenic acid, HReO(4), with chlorotrimethylsilane or with thionyl chloride, followed by addition of tetrahydrofuran, forms the new oxochloride complexes ReO(3)Cl(THF)(2) and ReOCl(4)(THF), respectively. Small amounts of two dinuclear oxochlorides, which evidently resulted from adventitious hydrolysis, were also isolated: Re(2)O(3)Cl(6)L(2), where L = THF or H(2)O. All four compounds were characterized by X-ray crystallography. The rhenium(vii) complex ReO(3)Cl(THF)(2) adopts a distorted octahedral geometry in which the three oxo ligands are in a facial arrangement; the rhenium(vi) complex ReOCl(4)(THF) adopts a trans octahedral structure. The two dinuclear rhenium(vi) compounds both have a single, nearly linear, bridging oxo group; on each Re center, the three terminal chlorides adopt a mer arrangement, and the terminal oxo and the coordinated Lewis base are mutually trans. The water ligand in the aqua complex is hydrogen bonded to nearby THF molecules. IR data are given.  相似文献   

19.
Toluene solutions of C(60) react upon UV irradiation with Fe(2)S(2)(CO)(6) to give C(60)[S(2)Fe(2)(CO)(6)](n)() where n = 1-6. C(60)[S(2)Fe(2)(CO)(6)](n)() where n = 1-3 have been isolated and characterized. Crystallographic studies of C(60)S(2)Fe(2)(CO)(6) show that the S-S bond of the Fe(2) reagent is cleaved to give a dithiolate with idealized C(2)(v)() symmetry. The addition occurred at a 6,6 fusion, and the metrical details show that the Fe(2) portion of the molecule resembles C(2)H(4)S(2)Fe(2)(CO)(6). IR spectroscopic measurements indicate that the Fe(2)(CO)(6) subunits in the multiple-addition species (n > 1) interact only weakly. UV-vis spectra of the adducts show a shift to shorter wavelength with addition of each S(2)Fe(2)(CO)(6) unit. Photoaddition of the phosphine complex Fe(2)S(2)(CO)(5)(PPh(3)) to C(60) gave C(60)[S(2)Fe(2)(CO)(5)(PPh(3))](n)(), where n = 1-3. (31)P{(1)H} NMR studies show that the double adduct consists of multiple isomers. Photoaddition of Fe(2)S(2)(CO)(6) to C(70) gave a series of adducts C(70)[S(2)Fe(2)(CO)(6)](n)() where n = 1-4. HPLC analyses show one, four, and three isomers for the adducts, respectively.  相似文献   

20.
The reaction of diazabutadienes of type R'N=C(R)-C(R)=NR', L (R = H, Me; R' = cycloalkyl, aryl) with Re(V)OCl(3)(AsPh(3))(2) has furnished Re(V)OCl(3)(L), 1, from which Re(III)(OPPh(3))Cl(3)(L), 2, and Re(V)(NAr)Cl(3)(L), 3, have been synthesized. Chemical oxidation of 2(R = H) by aqueous H(2)O(2) and of 3(R = H) by dilute HNO(3) has yielded Re(IV)(OPPh(3))Cl(3)(L'), 5, and Re(VI)(NAr)Cl(3)(L'), 4, respectively, where L' is the monoionized iminoacetamide ligand R'N=C(H)-C(=O)-NR'(-). Finally, the reaction of Re(V)O(OEt)X(2)(PPh(3))(2) with L has furnished bivalent species of type Re(II)X(2)(L)(2), 6(X = Cl, Br). The X-ray structures of 1 (R = Me, R' = Ph), 3 (R = H, R' = Ph, Ar = Ph), and 4 (R = H, R' = cycloheptyl, Ar = C(6)H(4)Cl) are reported revealing meridional geometry for the ReCl(3) fragment and triple bonding in the ReO (in 1) and ReNAr (in 3 and 4 ) fragments. The cis geometry (two Re-X stretches) of ReX(2)(L)(2) is consistent with maximized Re(II)-L back-bonding. Both ReX(2)(L)(2) and Re(NAr)Cl(3)(L') are paramagnetic (S = (1)/(2)) and display sextet EPR spectra in solution. The g and A values of Re(NAr)Cl(3)(L') are, respectively, lower and higher than those of ReX(2)(L)(2). All the complexes are electroactive in acetonitrile solution. The Re(NAr)Cl(3)(L) species display the Re(VI)/Re(V) couple near 1.0 V versus SCE, and coulometric studies have revealed that, in the oxidative transformation of 3 to 4, the reactive intermediate is Re(VI)(NAr)Cl(3)(L)(+) which undergoes nucleophilic addition of water at an imine site followed by induced electron transfer finally affording 4. In the structure of 3 (R = H, R' = Ph, Ar = Ph), the Re-N bond lying trans to the chloride ligand is approximately 0.1 A shorter than that lying trans to NPh. It is thus logical that the imine function incorporating the former bond is more polarized and therefore subject to more facile nucleophilic attack by water. This is consistent with the regiospecificity of the imine oxidation as revealed by structure determination of 4 (R = H, R' = cycloheptyl, Ar = C(6)H(4)Cl).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号