首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The present state of hydrodynamics and mass transfer studies in segmented gas-liquid flow in microchannels has been analyzed. It has been shown that such parameters as gas bubble velocity, gas hold-up, relative gas bubble length, pressure drop, mass transfer coefficients from gas bubbles to liquid slugs and to liquid film, as well as mass transfer coefficient from liquid to channel wall can be satisfactorily predicted. Nevertheless, some correlations were obtained under definite conditions and should be summarized. The purpose of further research is to develop reliable methods for calculation of mass transfer coefficients as functions of channel geometry, phase properties, and phase velocities in mini- and microchannels.  相似文献   

2.
In this work it is proposed a methodology for the kinetic information reconstruction based on the definition of a macrotransport transfer function and a numerical regularisation method. In continuous flowing systems there could be a discrepancy, for fast enough processes, between the read measure in the detector and what actually happens in the chemical reactor. This difference is a consequence of the solute dispersion along the tube. To solve this problem we define a macrotransport transfer function from the Aris–Taylor dispersion theory which enables us a direct interpretation of the experimental data (convolution) or signal reconstruction (deconvolution). The methodology proposed consists in data processing using Tikhonov regularisation method in combination with a specific experimental procedure which allows to characterize the dispersion of the solute along the flowing system. Preliminary results for the determination of the specific area of a gas–liquid reactor are shown analysing the reaction data between the ozone and the Blue Indigotrisulfonate.  相似文献   

3.
U–10 wt% Zr fuel rodlets, which will be irradiated in the HANARO research reactor in order to evaluate the irradiation performance of metallic fuel and validate the in-reactor behavior, were prepared through determined fabrication processes. Injection casting technology was applied to produce U–10Zr fuel slugs, and sodium melt and a bonding process were conducted to bond a fuel slug to the fuel cladding. To seal the end plug to the fuel cladding tube, a gas tungsten arc welding technique was adopted. Based on the results of these experiments, sodium-cooled fast reactor fuel rodlets for irradiation testing in the HANARO research reactor have been soundly fabricated.  相似文献   

4.
Metal fuel slugs of U–Zr alloys for a sodium-cooled fast reactor (SFR) have been fabricated using an injection casting method. However, casting alloys containing volatile radioactive constituents such as Am can cause problems in a conventional injection casting method. Therefore, in this study, several injection-casting methods were applied to evaluate the volatility of the metal-fuel elements and control the transport of volatile elements. Mn was selected as a volatile surrogate alloy since it possesses a total vapor pressure equivalent to that of minor actinide-bearing fuels for SFRs. U–10 wt% Zr and U–10 wt% Zr–5 wt% Mn metal fuels were prepared, and the casting processes were evaluated. The casting soundness of the fuel slugs was characterized by gamma-ray radiography and immersion density measurements. Inductively coupled plasma atomic emission spectroscopy was used to determine the chemical composition of fuel slugs. Fuel losses after casting were also evaluated according to the casting conditions.  相似文献   

5.
This paper presents the synthesis of combinatorial libraries performed on a single-channel glass micro reactor under hydrodynamic flow control. The experiments were carried out in a non-well based micro chip and consisted of the preparation of libraries of pyrazoles by means of a Knorr reaction of 1,3-dicarbonyl compounds with hydrazines. The aim of this work is to investigate the capabilities of an automated micro reactor based system to synthesise sequentially multiple analogue reactions. Small slugs of reactants were introduced automatically by an autosampler in a serpentine-etched glass chip. The mobility of the reagents and products was achieved using hydrodynamic driven flow. Reaction slug dilution and UV slug detection took place at the outlet. A sample of the slug was analysed by using an on-line LC-UV-MS system. The degree of conversion was quantified using the UV signal and comparing with standards of starting materials and final products. After the LC-UV-MS analysis, the automated system proceeds to inject the slugs to carry out the next reaction programmed. The results suggest that the micro reactor system is capable of repeating the process of injection, mixing and reaction in an automated manner as many times as required.  相似文献   

6.
Metal fuel slugs of U–Zr alloys for a sodium-cooled fast reactor (SFR) have conventionally been fabricated using an injection casting method. However, casting alloys containing volatile radioactive constituents, such as Am, are problematic in a conventional injection casting method. As an alternative fabrication method, low pressure gravity casting has been developed. Casting soundness, microstructural characteristics, alloying composition, density, and fuel losses were evaluated for the following as-cast fuel slugs: U–10 wt% Zr, U–10 wt% Zr–5 wt% RE, and U–10 wt% Zr–5 wt% RE–5 wt% Mn. The U and Zr contents were uniform throughout the matrix, and impurities such as oxyen, carbon, and nitrogen satisfied the specification of total impurities less than 2,000 ppm. The appearance of the fuel slugs was generally sound, and the internal integrity was shown to be satisfactory based on gamma-ray radiography. In a volatile surrogate casting test, the U–Zr–RE–Mn fuel slug showed that nearly all of the manganese was retained when casting was done under an inert atmosphere.  相似文献   

7.
We describe a new implementation of the molecular dynamics method aimed at simulation of the properties of biomolecular systems in which chemical reactions are possible. The quantum mechanical/molecular mechanical method based on the effective fragment potential theory is used for calculating the energies and forces along trajectories. Due to specific features of the effective fragment theory, the behavior of the molecular mechanical subsystem is described by rigid body dynamics. The method has been applied to simulation of proton transfer along the chain of water molecules inside the gramicidin channel.  相似文献   

8.
M Yamazaki 《Radioisotopes》1988,37(3):159-162
A short assembly program for the PC-9801 series personal computer (NEC Corporation) has been written to receive and write the 4096 or less channel data from the S35 plus and S40 MCA (Canberra Industries Inc.) to a floppy disk. The operating system is the MS-DOS version 3.10. The data are transferred via RS-232C, and the each byte of data is received by MS-DOS BIOS call. The source list of the program is shown, and the procedures to obtain the executable code from the source list and to use the data on disks in a N83 BASIC program are explained. By using the program, it takes about 22 s to transfer a whole of 4096 channel data with the transfer rate of 9600 baud.  相似文献   

9.
A new 3-phase ac plasma reactor has been developed within the framework of research on hydrocarbon cracking for the production of carbon black and hydrogen. (1,2) One of the main characteristics of the system is related to the 3-phase, 50 Hz ac current plasma generator which induces a very particular arc motion affecting the heat and mass transfer inside the reactor. In a first step, the general flow inside the reactor in the absence of hydrocarbon injection has been studied. A simplified approach to characterize the heat and mass transfer inside the reactor is presented in this paper. The arc zone analysis is carried out simultaneously by a theoretical analysis of the electromagnetic forces and by an ultrahigh-speed cine-camera analysis. The flow in the reactor is modeled with a CFD commercial code. Results are compared with experimental temperature measurements.  相似文献   

10.
Electric field-enhanced cross-flow ultrafiltration has been carried out to separate protein, bovine serum albumin, from aqueous solution using a 30,000 molecular weight cutoff membrane. A theoretical model is developed to predict permeate flux under a laminar flow regime including the effects of external d.c. electric field and suction through the membrane for osmotic pressure-controlled ultrafiltration. The governing equations of the concentration profile in the developing mass transfer boundary layer in a rectangular channel are solved using a similarity solution method. The effect of d.c. electric field on the variation of membrane surface concentration and permeate flux along the length of the channel is quantified using this model. The expression of Sherwood number relation for estimation of mass transfer coefficient is derived. The analysis revealed that there is a significant effect of electric field on the mass transfer coefficient. A detailed parametric study has been carried out to observe the effect of feed concentration, electric field, cross-flow velocity, and pressure on the permeate flux. For 1 kg/m3 BSA solution, by applying a d.c. electric field of 1000 V/m, the permeate flux increases from 42 to 98 L/m2 h compared to that with zero electric field. The experimental results are successfully compared with the model predicted results.  相似文献   

11.
Molla S  Eskin D  Mostowfi F 《Lab on a chip》2011,11(11):1968-1978
Pressure drop in a gas-liquid slug flow through a long microchannel of rectangular cross-section was investigated. Pressure measurements in a lengthy (~0.8 m) microchannel determined the pressure gradient to be constant in a flow where gas bubbles progressively expanded and the flow velocity increased due to a significant pressure drop. Most of the earlier studies of slug flow in microchannels considered systems where the expansion of the gas bubbles was negligible in the channel. In contrast, we investigated systems where the volume of the gas phase increased significantly due to a large pressure drop (up to 1811 kPa) along the channel. This expansion of the gas phase led to a significant increase in the void fraction, causing considerable flow acceleration. The pressure drop in the microchannel was studied for three gas-liquid systems; water-nitrogen, dodecane-nitrogen, and pentadecane-nitrogen. Inside the microchannel, local pressure was measured using a series of embedded membranes acting as pressure sensors. Our investigation of the pressure drop showed a linear trend over a wide range of void fractions and flow conditions in the two-phase flow. The lengths and the velocities of the liquid slugs and the gas bubbles were also studied along the microchannel by employing a video imaging technique. Furthermore, a model describing the gas-liquid slug flow in a long microchannel was developed to calculate the pressure drop under conditions similar to the experiments. An excellent agreement between the developed model and the experimental data was obtained.  相似文献   

12.
Spouted beds are used in many physical and chemical processes that involve large particles (drying, combustion, film deposition, gasification, etc.). Understanding of bed hydrodynamics, coupled heat and mass transfer and chemical reaction phenomena is mandatory for designing, scaling up and optimizing spouted beds. In this work, a spouted bed reactor operating at high temperature has been modelled through one-dimensional model in which heat transfer has been carefully described at different levels of complexity. The process of coal gasification has been selected to demonstrate the models achievements and predictions have been compared to previous spouted bed reactor experimental results. Calculations have shown that a particular attention must be paid to describe heat transfer in spouted bed reactors operating at high temperature.  相似文献   

13.
Zeolite-based monoliths (Cu/ZSM-5 on cordierite) are prepared and used to catalyze direct decomposition of nitrogen monoxide. Two-dimensional heterogeneous model is applied to describe the behavior of the monolith reactor, with the emphasis on the features introduced due to coupling of flow, mass transfer and chemical reaction. The proposed model has been verified by comparing computer simulation data with laboratory experimental data. It is shown that both inter- and intraphase diffusion limitations have to be considered when modeling complex reactor configuration, such as monolith reactors, especially when monolith with thicker catalytic layer are used at higher temperatures.  相似文献   

14.
The pressure drop along rectangular microchannels containing bubbles   总被引:2,自引:0,他引:2  
This paper derives the difference in pressure between the beginning and the end of a rectangular microchannel through which a flowing liquid (water, with or without surfactant, and mixtures of water and glycerol) carries bubbles that contact all four walls of the channel. It uses an indirect method to derive the pressure in the channel. The pressure drop depends predominantly on the number of bubbles in the channel at both low and high concentrations of surfactant. At intermediate concentrations of surfactant, if the channel contains bubbles (of the same or different lengths), the total, aggregated length of the bubbles in the channel is the dominant contributor to the pressure drop. The difference between these two cases stems from increased flow of liquid through the "gutters"-the regions of the system bounded by the curved body of the bubble and the corners of the channel-in the presence of intermediate concentrations of surfactant. This paper presents a systematic and quantitative investigation of the influence of surfactants on the flow of fluids in microchannels containing bubbles. It derives the contributions to the overall pressure drop from three regions of the channel: (i) the slugs of liquid between the bubbles (and separated from the bubbles), in which liquid flows as though no bubbles were present; (ii) the gutters along the corners of the microchannels; and (iii) the curved caps at the ends of the bubble.  相似文献   

15.
16.
《中国化学快报》2023,34(4):107710
A millimeter scale butterfly-shaped reactor was proposed based on sizing-up strategy and fabricated via femtosecond laser engraving. An improvement of mixing performance and residence time distribution was realized by means of contraction and expansion of the reaction channel. The liquid holdup was greatly increased through connection of multiple mixing units. Structure optimization of the reactor was carried out by computational fluid dynamics simulation, from which the effect of reactor internals on mixing and the influence of parallel branching structure on heat transfer were discussed. The UV–vis absorption spectroscopy was used to determine the residence time distribution in the reactor, and characteristic parameters such as skewness and dimensionless variance were obtained. Further, a chained stagnant flow model was proposed to precisely describe the trailing phenomenon caused by fluid stagnation and laminar flow in small scale reactors, which enables a better fit for the experimental results of the asymmetric residence time distribution. In addition, the heat transfer performance of the reactor was investigated, and the overall heat transfer coefficient was 110–600 W m-2 K-1 in the flow rate range of 10–40 mL/min.  相似文献   

17.
Park CP  Maurya RA  Lee JH  Kim DP 《Lab on a chip》2011,11(11):1941-1945
A transparent dual-channel microreactor with highly enhanced contact area-to-volume ratio was fabricated for efficient photosensitized oxygenations. The dual-channel microreactor shielded with polyvinylsilazane (PVSZ) consisting of an upper channel for liquid flow and a lower channel for O(2) flow, allows sufficient phase contact along the parallel channels through a gas permeable PDMS membrane for maintaining the O(2) saturated solution. Under full exposure of reactants to light, the reactions in high concentration are completed in minutes rather than hours that it takes to complete in a batch reactor. Moreover, the scale-up process using the microreactor revealed higher productivity than the batch reactor, which would be valuable for the practical applications in a broad range of gas-liquid chemical reactions.  相似文献   

18.
McCreedy T  Wilson NG 《The Analyst》2001,126(1):21-23
Microfabricated devices constructed from glass and polydimethylsiloxane with integral heaters are described, which can be used for heterogeneous catalysis reactions. Sulfated zirconia is used as the catalyst in an open channel reactor, with either a syringe pump or electroosmotic flow being used to deliver the reactants. The results clearly demonstrate that very high conversion efficiencies are possible, however, the thermodynamics of the reactions are the same as in bulk systems. Ethanol and hexanol are dehydrated to ethene and hexene, respectively, with conversion efficiencies approaching 100%, and the esterification of ethanol is investigated. Yields of approximately 30% ethyl acetate are obtained by gas chromatographic analysis. This is the first time such a method for fabricating a catalyst micro reactor has been reported, yet it demonstrates sufficient robustness and resistance to leakage. The use of electroosmotic flow in a heated catalyst reactor is a significant advancement in reactor design.  相似文献   

19.
The large interest in long-range proton transfer in biomolecules is triggered by its importance for many biochemical processes such as biological energy transduction and drug detoxification. Since long-range proton transfer occurs on a microsecond time scale, simulating this process on a molecular level is still a challenging task and not possible with standard simulation methods. In general, the dynamics of a reactive system can be described by a master equation. A natural way to describe long-range charge transfer in biomolecules is to decompose the process into elementary steps which are transitions between microstates. Each microstate has a defined protonation pattern. Although such a master equation can in principle be solved analytically, it is often too demanding to solve this equation because of the large number of microstates. In this paper, we describe a new method which solves the master equation by a sequential dynamical Monte Carlo algorithm. Starting from one microstate, the evolution of the system is simulated as a stochastic process. The energetic parameters required for these simulations are determined by continuum electrostatic calculations. We apply this method to simulate the proton transfer through gramicidin A, a transmembrane proton channel, in dependence on the applied membrane potential and the pH value of the solution. As elementary steps in our reaction, we consider proton uptake and release, proton transfer along a hydrogen bond, and rotations of water molecules that constitute a proton wire through the channel. A simulation of 8 mus length took about 5 min on an Intel Pentium 4 CPU with 3.2 GHz. We obtained good agreement with experimental data for the proton flux through gramicidin A over a wide range of pH values and membrane potentials. We find that proton desolvation as well as water rotations are equally important for the proton transfer through gramicidin A at physiological membrane potentials. Our method allows to simulate long-range charge transfer in biological systems at time scales, which are not accessible by other methods.  相似文献   

20.
A simple method for the on-line calibration, in which both the heat transfer coefficient and the heat capacity of the reactor contents are determined, is described for laboratory scale heat transfer calorimeters. The calorimeter is operated in the isoperibolic mode for the calibration and a constant power is supplied to a resistor placed inside the reactor. The reactor heat balance differential equation is used to produce a set of linear simultaneous equations with each data acquisition cycle giving one equation. The heat transfer coefficient and the heat capacity are obtained from this set of equations by linear least squares. The application of the calibration procedure is illustrated by experiments in which the heat of reaction is determined on-line fora simulated reaction with first order kinetics and for the hydrolysis of acetic anhydride. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号