首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The poor selectivity of photosensitizers for tumor tissue remains a drawback in photodynamic therapy (PDT) and could be improved by adapted formulations. The cellular uptake, localization and phototoxicity of meta-tetra(hydroxyphenyl)chlorin (mTHPC) encapsulated in submicronic colloidal carriers have been studied in macrophage-like J774 cells and HT 29 human adenocarcinoma cells. Nanocapsules with an external layer made of poly(D,L lactic acid) (PLA NCs), PLA grafted with polyethylene glycol (PLA-PEG NCs), PLA coated with poloxamer 188 (polox PLA NCs) and oil/water nanoemulsion (NE) have been examined. The cellular uptake by J774, as determined by microspectroflorimetry, is reduced with mTHPC encapsulated into surface-modified NCs--PLA-PEG and polox PLA--compared with naked PLA, indicating a possible limitation of the clearance of such carriers by the reticuloendothelial system. Encapsulation also modifies the interaction between mTHPC and HT29 cells. Compared with the manufacturer's solution (PEG, ethanol, water), the cellular uptake is strongly reduced. However, the HT29 phototoxicity is much less affected and a protecting effect against plasma proteins is observed. Fluorescence microscopy reveals a specific punctate fluorescence pattern with PLA-PEG and polox PLA NCs in contrast to a more diffuse distribution with NE and solution, indicating that photodamage targeting could be different. These findings suggest that photosensitizers encapsulated into surface-modified nanocapsules could be a promising approach for improving PDT efficacy and this has to be confirmed in vivo.  相似文献   

2.
Low molecular weight (M(w)) poly(L-lactic acid) (PLA) nanoparticles were coated with polyelectrolytes (PEs) by layer-by-layer (LbL) technique using a filtration approach. Poly(allylamine hydrochloride) and poly(sodium 4-styrenesulfonate) were applied as PEs in coating. LbL coating is aimed to use in producing (nano)particulate drug delivery systems with improved biocompatibility and sustained or targeted release of drug substances. Nanoparticles of rapidly biodegradable polymers, like the low M(w) PLA, open up a possibility to control the release of the encapsulated substance by the coating, but set challenges to the coating process due to increased aggregation tendency and degradation rate of the polymer. When the core PLA nanoparticles were prepared by nanoprecipitation, surface properties of the nanoparticles were affected by solvent selection. Successful LbL coating of the PLA nanoparticles was obtained only with chloroform, but not with dichloromethane as the solvent during nanoprecipitation. Reason for this was found to be the more charged surface of the nanoparticles prepared with chloroform compared to the nanoparticles prepared with dichloromethane.  相似文献   

3.
Nanoparticles are useful for the delivery of small molecule therapeutics, increasing their solubility, in vivo residence time, and stability. Here, we used organocatalytic ring opening polymerization to produce amphiphilic block copolymers for the formation of nanoparticle drug carriers with enhanced stability, cargo encapsulation, and sustained delivery. These polymers comprised blocks of poly(ethylene glycol) (PEG), poly(valerolactone) (PVL), and poly(lactide) (PLA). Four particle chemistries were examined: (a) PEG‐PLA, (b) PEG‐PVL, (c) a physical mixture of PEG–PLA and PEG–PVL, and (d) PEG–PVL–PLA tri‐block copolymers. Nanoparticle stability was assessed at room temperature (20 °C; pH = 7), physiological temperature (37 °C; pH = 7), in acidic media (37 °C; pH = 2), and with a digestive enzyme (lipase; 37 °C; pH = 7.4). PVL‐based nanoparticles demonstrated the highest level of stability at room temperature, 37 °C and acidic conditions, but were rapidly degraded by lipase. Moreover, PVL‐based nanoparticles demonstrated good cargo encapsulation, but rapid release. In contrast, PLA‐based nanoparticles demonstrated poor stability and encapsulation, but sustained release. The PEG–PVL–PLA nanoparticles exhibited the best combination of stability, encapsulation, and release properties. Our results demonstrate the ability to tune nanoparticle properties by modifying the polymeric architecture and composition. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1322–1332  相似文献   

4.
生物可降解5-氟尿嘧啶载药微球的制备及性能研究   总被引:5,自引:0,他引:5  
5-氟尿嘧啶(5-Fu)为水溶性嘧啶类抗代谢药,是治疗实体肿瘤的首选药物.但5-Fu毒性很大,血浆中停留半衰期t1/2仅为10~20min.为了减少氟尿嘧啶的毒副作用并提高药物利用率,可以将其制成聚合物载药微球.聚酯类高分子是较为常用的生物降解型药物载体材料,其中聚乳酸(PLA)及其共聚物具有良好的生物相容性及生物可降解性,常被广泛应用于药物缓释材料,  相似文献   

5.
Recently, there has been a great demand for boron-containing compounds (BCCs) with unique biological properties. The demand for the use of these compounds not alone but as additives in composite materials is increasing day by day. In this study, the effect of adding B2O3 compound to the blend of PLA and PEG polymers, which is an important biocompatible shape memory polymer, was investigated. In order to examine the effect of increasing B2O3 additive on the thermal properties of PLA-PEG blend, it was determined by using a Differential Scanning Calorimetry (DSC) and thermogravimetric analyzer (TGA), and it was seen that while the melting temperature of PEG decreased, the melting temperature of PLA increased. In addition, when the thermal stability of the composites was examined, increasing of thermal stability was observed with the addition of B2O3 and a three-step degradation occurred. It was determined that the B2O3/PLA-PEG composite was homogeneous by taking X-ray measurements and SEM measurements. The antimicrobial property of the PLA-PEG blend improved with the increasing B2O3 contribution were observed from the antimicrobial activity measurements of the composite against 4 different bacteria. However, it was determined that the PLA-PEG blend preserved its shape memory effect with increasing diboron trioxide contribution.  相似文献   

6.
Pyrene-loaded biodegradable polymer nanoparticles were prepared by incorporating pyrene into the polymer nanoparticles formulated from amphiphilic diblock copolymer, methoxy poly(ethylene glycol)–poly(lactic acid) (MePEG–PLA). Their morphological structure and physical properties were characterized by nuclear magnetic resonance (NMR), dynamic light scattering, fluorescence spectroscopy, transmission electronic microscopy and zeta potential measurements. Further, MePEG–PLA nanoparticles containing pyrene as fluorescent marker were administered intranasally to rats, and the distribution of nanoparticles in the nasal mucosa and the olfactory bulb were visualized by fluorescence microscopy. NMR results confirmed that MePEG–PLA copolymer can form nanoparticles in water, and hydrophilic PEG chains were located on the surface of the nanoparticles. The particle size, zeta potential and pyrene loading efficiency of MePEG–PLA nanoparticles were dependent on the PLA block content in the copolymer. Following nasal administration, the absorption of nanoparticles across the epithelium was rapid, with fluorescence observed in the olfactory bulb at 5 min, and a higher level of fluorescence persisted in the olfactory mucosa than that in the respiratory mucosa. These results show that pyrene could serve as a useful fluorescence probe for incorporation into polymer nanoparticles to study tissue distribution and MePEG–PLA nanoparticles might have a great potential as carriers of hydrophobic drugs.  相似文献   

7.
Nanoparticles possessing poly(ethylene glycol) (PEG) chains on their surface have been described as blood persistent drug delivery system with potential applications for intravenous drug administration. Considering the importance of protein interactions with injected colloidal dug carriers with regard to their in vivo fate, we analysed plasma protein adsorption onto biodegradable PEG-coated poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA) and poly(-caprolactone) (PCL) nanoparticles employing two-dimensional gel electrophoresis (2-D PAGE). A series of corona/core nanoparticles of sizes 160–270 nm were prepared from diblock PEG-PLA, PEG-PLGA and PEG-PCL and from PEG-PLA:PLA blends. The PEG Mw was varied from 2000–20 000 g/mole and the particles were prepared using different PEG contents. It was thus possible to study the influence of the PEG corona thickness and density, as well as the influence of the nature of the core (PLA, PLGA or PCL), on the competitive plasma protein adsorption, zeta potential and particle uptake by polymorphonuclear (PMN) cells. 2-D PAGE studies showed that plasma protein adsorption on PEG-coated PLA nanospheres strongly depends on the PEG molecular weight (Mw) (i.e. PEG chain length at the particle surface) as well as on the PEG content in the particles (i.e. PEG chain density at the surface of the particles). Whatever the thickness or the density of the corona, the qualitative composition of the plasma protein adsorption patterns was very similar, showing that adsorption was governed by interaction with a PLA surface protected more or less by PEG chains. The main spots on the gels were albumin, fibrinogen, IgG, Ig light chains, and the apolipoproteins apoA-I and apoE. For particles made of PEG-PLA45K with different PEG Mw, a maximal reduction in protein adsorption was found for a PEG Mw of 5000 g/mole. For nanospheres differing in their PEG content from 0.5 to 20 wt %, a PEG content between 2 and 5 wt % was determined as a threshold value for optimal protein resistance. When increasing the PEG content in the nanoparticles above 5 wt % no further reduction in protein adsorption was achieved. Phagocytosis by PMN studied using chemiluminescence and zeta potential data agreed well with these findings: the same PEG surface density threshold was found to ensure simultaneously efficient steric stabilization and to avoid the uptake by PMN cells. Supposing all the PEG chains migrate to the surface, this would correspond to a distance of about 1.5 nm between two terminally attached PEG chains in the covering ‘brush’. Particles from PEG5K-PLA45K, PEG5K-PLGA45K and PEG5K-PCL45K copolymers enabled to study the influence of the core on plasma protein adsorption, all other parameters (corona thickness and density) being kept constant. Adsorption patterns were in good qualitative agreement with each other. Only a few protein species were exclusively present just on one type of nanoparticle. However, the extent of proteins adsorbed differed in a large extent from one particle to another. In vivo studies could help elucidating the role of the type and amount of proteins adsorbed on the fate of the nanoparticles after intraveinous administration, as a function of the nature of their core. These results could be useful in the design of long circulating intravenously injectable biodegradable drug carriers endowed with protein resistant properties and low phagocytic uptake.  相似文献   

8.
PLA/PEG/PLA三嵌段共聚物载药纳米胶囊的制备及表征   总被引:8,自引:1,他引:8  
用于药物控释体系的微胶束具有实心微球结构,药物分子主要吸附于微球表面,极易脱落,在释药初期有明显的突释效应;而微胶囊的药物主要集中于囊心部分,药物通过扩散作用以及高分子膜的降解而逐渐释放到环境中,因而更有利于药物分子平稳、缓慢地释放.对于自然界中能够自发形成微胶囊的小分子材料,其分子中往往具有一个较小的亲水部分和一个相对较大的憎水部分,  相似文献   

9.
The drug delivery properties of a series of poly(lactic acid)–poly(ethylene glycol) (PLA–PEG) micellar-like nanoparticles have been assessed in terms of their colloidal stability and their ability to incorporate a water soluble drug. These studies have focused on a range of PLA–PEG copolymers with a fixed PEG block (5 kDa) and a varying PLA segment (3–110 kDa). In aqueous media, these copolymers formed micellar-like assemblies following precipitation from water miscible solvents. There was a controlled increase in the particle size as the molecular weight of the PLA block was increased. The characteristics of the PEG corona were also highly dependent on the PLA moiety. Copolymers with a low molecular weight PLA block (3–15 kDa) formed highly colloidally stable dispersions, with a complete PEG surface coverage. However, increasing the molecular weight of the PLA block resulted in significantly less colloidally stable nanoparticle dispersions, which flocculated in solvents that were significantly better than θ-solvents for the stabilising PEG chains. This can be attributed to a reduced PEG surface coverage and the probable presence of naked PLA ‘patches’ on the particle surface. These larger PLA–PEG nanoparticles (30:5–110:5) were found to be stabilised in the presence of serum components, which are thought to adsorb into the gaps on the particle surface and prevent flocculation. All of the dispersions were found to be stable under physiological conditions and therefore suitable for in vivo administration. A reasonable loading (3.1% w/w) of the micellar-like PLA–PEG 30:5 nanoparticles with the water soluble drug procaine hydrochloride was achieved. The incorporated drug was found to have no effect on the nanoparticle structure or recovery, which can be attributed to the micellar character of these assemblies and the presence of the stabilising PEG chains.  相似文献   

10.
In this work, new ways of plasticizing polylactide (PLA) with low molecular poly(ethylene glycol) (PEG) were developed to improve the ductility of PLA while maintaining the plasticizer content at maximum 20 wt.% PLA. To this end, a reactive blending of anhydride-grafted PLA (MAG-PLA) copolymer with PEG, with chains terminated with hydroxyl groups, was performed. During the melt-processing, a fraction of PEG was grafted into the anhydride-functionalized PLA chains. The role of the grafted fraction was to improve the compatibility between PLA and PEG. Reactive extrusion and melt-blending of neat and modified PLA with PEG did not induce any dramatic drop of PLA molecular weight. The in situ reactive grafting of PEG into the modified PLA in PLA/PEG blends showed a clear effect on the thermal properties of PLA. It was demonstrated by DSC that the mobility gained by PLA chains in the plasticized blends yielded crystallization. The grafting of a fraction of PEG into PLA did not affect this process. However, DSC results obtained after the second heating showed an interesting effect on the Tg when 20 wt.% PEG were melt blended with neat PLA or 10 wt.% MAG-PLA. In the latter case, the Tg displayed by the reactive blend was shifted to even lower temperatures at around 14 °C, while the Tg of neat PLA and PLA blended with 20 wt.% PEG was around 60 and 23 °C, respectively. Regarding viscoelastic and viscoplastic properties, the presence of MAG-PLA does not significantly influence the behavior of plasticized PLA. Indeed, with or without MAG-PLA, elastic modulus and yield stress decrease, while ultimate strain increases with the addition of PEG into PLA.  相似文献   

11.
The purpose of this investigation was to design novel pentablock copolymers (polylactide–polycaprolactone–polyethylene glycol–polycaprolactone–polylactide) (PLA–PCL–PEG–PCL–PLA) to prepare nanoparticle formulations which provide continuous delivery of steroids over a longer duration with minimal burst effect. Another purpose was to evaluate the effect of poly(l-lactide) (PLLA) and poly(d,l-lactide) (PDLLA) incorporation on crystallinity of pentablock copolymers and in vitro release profile of triamcinolone acetonide (selected as model drug) from nanoparticles. PLA–PCL–PEG–PCL–PLA copolymers with different block ratio of PCL/PLA segment were synthesized. Release of triamcinolone acetonide from nanoparticles was significantly affected by crystallinity of the copolymers. Burst release of triamcinolone acetonide from nanoparticles was significantly minimized with incorporation of proper ratio of PDLLA in the existing triblock (PCL–PEG–PCL) copolymer. Moreover, pentablock copolymer-based nanoparticles exhibited continuous release of triamcinolone acetonide. Pentablock copolymer-based nanoparticles can be utilized to achieve continuous near–zero-order delivery of corticosteroids from nanoparticles without any burst effect.  相似文献   

12.
Core‐shell structured nanoparticles of poly(ethylene glycol) (PEG)/polypeptide/poly(D ,L ‐lactide) (PLA) copolymers were prepared and their properties were investigated. The copolymers had a poly(L ‐serine) or poly(L ‐phenylalanine) block as a linker between a hydrophilic PEG and a hydrophobic PLA unit. They formed core‐shell structured nanoparticles, where the polypeptide block resided at the interface between a hydrophilic PEG shell and a hydrophobic PLA core. In the synthesis, poly(ethylene glycol)‐b‐poly(L ‐serine) (PEG‐PSER) was prepared by ring opening polymerization of N‐carboxyanhydride of O‐(tert‐butyl)‐L ‐serine and subsequent removal of tert‐butyl groups. Poly(ethylene glycol)‐b‐poly(L ‐phenylalanine) (PEG‐PPA) was obtained by ring opening polymerization of N‐carboxyanhydride of L ‐phenylalanine. Methoxy‐poly(ethylene glycol)‐amine with a MW of 5000 was used as an initiator for both polymerizations. The polymerization of D ,L ‐lactide by initiation with PEG‐PSER and PEG‐PPA produced a comb‐like copolymer, poly(ethylene glycol)‐b‐[poly(L ‐serine)‐g‐poly(D ,L ‐lactide)] (PEG‐PSER‐PLA) and a linear copolymer, poly(ethylene glycol)‐b‐poly(L ‐phenylalanine)‐b‐poly(D ,L ‐lactide) (PEG‐PPA‐PLA), respectively. The nanoparticles obtained from PEG‐PPA‐PLA showed a negative zeta potential value of ?16.6 mV, while those of PEG‐PSER‐PLA exhibited a positive value of about 19.3 mV. In pH 7.0 phosphate buffer solution at 36 °C, the nanoparticles of PEG/polypeptide/PLA copolymers showed much better stability than those of a linear PEG‐PLA copolymer having a comparable molecular weight. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
Oral delivery is one of the facile methods for the administration of active ingredients (AIs) like nutraceuticals and drugs. However, its intrinsic disadvantages include poor absorption and bioavailability, degradation of the AI during transit through the gastrointestinal tract (GIT), and a lack of action specificity. Hence, a delivery system for targeted gastrointestinal delivery of AI using polysaccharide‐based polymers, that are generally recognized as safe and approved for use as a direct food additive, is proposed. In this regard, mucoadhesive chitosan nanoparticles that could adhere to the mucosa of the GIT are fabricated and encapsulated with AI. These particles are subsequently coated with polysaccharides that have different enzymatic susceptibilities, to allow for specific degradation in the small or large intestines. It is observed that the polysaccharide coating efficiently retarded the nonspecific release of the encapsulated agent until it is exposed to its intended environment of release. The cytotoxicity and uptake of chitosan nanoparticles is further evaluated on Caco2 cells. In conclusion, these polysaccharide‐coated nanoparticles can potentially be targeted to different organs in the GIT and to be taken up by the enterocytes for improved oral bioavailability.  相似文献   

14.
The leading principle of non-viral delivery systems for gene therapy is to mediate high levels of gene expression with low cytotoxicity. Nowadays, biodegradable nanoparticles formulated with poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) were wildly developed. However, the relative lower gene transfection efficiency and higher cytotoxicity still remained critical problems. To address these limitations, PLA-PEG nanoparticles have been composited with other components in their formulation. Here, a novel cationic lipid, 6-lauroxyhexyl lysinate (LHLN), was fabricated onto PLA-PEG nanoparticles as a charge modifier to improve the transfection efficiency and cytotoxicity. The obtained cationic LHLN modified PLA-PEG nanoparticles (LHLN-PLA-PEG NPs) could condense pDNA thoroughly via electrostatic force, leading to the formation of the LHLN-PLA-PEG NPs/pDNA complexes (NPs/DNA complexes). The nanoparticles obtained have been characterized in relation to their physicochemical and biological properties, and the results are extremely promising in terms of low cell toxicity and high transfection efficiency. These results indicated that the novel cationic LHLN modified PLA-PEG nanoparticles could enhance gene transfection in vitro and hold the potential to be a promising non-viral nanodevice.  相似文献   

15.
Summary: The aims of the present work were to prepare and characterize nanocapsules containing antitumoral agent methotrexate (MTX) from poly(D ,L -lactide) (PLA) and poly(D ,L -lactide)-poly(ethylene glycol) diblock copolymer (PLA-PEG) with the purpose of administrating this drug by topical ocular route for primary ocular lymphoma treatment. Nanocapsules were prepared by the interfacial deposition of preformed polymer. The influences of the initial amount of MTX on the encapsulation efficiency, drug recovery and drug content, as well as the physicochemical properties of the particles were evaluated. The particle mean diameters were 246 and 146 nm, and zeta potential values were −38.8 and −33.6 mV, for the MTX-loaded nanocapsules prepared from PLA and PLA-PEG, respectively. The methotrexate content in the particles increased with the increasing in the drug amount added to the formulations, but the drug recovery decreased significantly. After 4 h of in vitro release, 28 and 86% of MTX was released from PLA and PLA-PEG nanocapsules, respectively.  相似文献   

16.
Microporous structure and drug release kinetics of polymeric nanoparticles   总被引:1,自引:0,他引:1  
The aim of the present study was to characterize pegylated nanoparticles (NPs) for their microporosity and study the effect of microporosity on drug release kinetics. Blank and drug-loaded NPs were prepared from three different pegylated polymers, namely, poly(ethylene glycol)1%-graft-poly(D,L)-lactide, poly(ethylene glycol)5%-graft-poly(D,L)-lactide, and the multiblock copolymer (poly(D,L)-lactide-block-poly(ethylene glycol)-block-poly(D,L)-lactide)n. These NPs were characterized for their microporosity using nitrogen adsorption isotherms. NPs of the multiblock copolymer showed the least microporosity and Brunauer-Emmett-Teller (BET) surface area, and that of PEG1%-g-PLA showed the maximum. Based on these results, the structural organization of poly(D,L)-lactide (PLA) and poly(ethylene glycol) (PEG) chains inside the NPs was proposed and was validated with differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS) surface analysis. An in vitro drug release study revealed that PEG1%-g-PLA NPs exhibited slower release despite their higher surface area and microporosity. This was attributed to the presence of increased microporosity forming tortuous internal structures, thereby hindering drug diffusion from the matrix. Thus, it was concluded that the microporous structure of NPs, which is affected by the molecular architecture of polymers, determines the release rate of the encapsulated drug.  相似文献   

17.
With diabetes being the 7th leading cause of death worldwide, overcoming issues limiting the oral administration of insulin is of global significance. The development of imine-linked-covalent organic framework (nCOF) nanoparticles for oral insulin delivery to overcome these delivery barriers is herein reported. A gastro-resistant nCOF was prepared from layered nanosheets with insulin loaded between the nanosheet layers. The insulin-loaded nCOF exhibited insulin protection in digestive fluids in vitro as well as glucose-responsive release, and this hyperglycemia-induced release was confirmed in vivo in diabetic rats without noticeable toxic effects. This is strong evidence that nCOF-based oral insulin delivery systems could replace traditional subcutaneous injections easing insulin therapy.

We report the successful use of a gastro-resistant covalent organic framework for in vivo oral delivery of insulin.  相似文献   

18.
Novel lipid-polymer hybrid nanoparticles are designed with a poly(ethylene glycol) (PEG) coating that is shed in response to a low pH trigger. This allows the nanoparticles to be stable during systemic circulation and at neutral pH, but destabilize and fuse with lipid membranes in acidic environments. The hybrid nanoparticles consist of a poly(lactic-co-glycolic acid) core with a lipid and lipid-PEG monolayer shell. To make the hybrid nanoparticles pH sensitive, a lipid-(succinate)-mPEG conjugate is synthesized to provide a hydrolyzable PEG stealth layer that is shed off the particle surface at low pH. The pH-sensitivity of the nanoparticles is tunable using the molar concentration of the lipid-(succinate)-mPEG incorporated in the lipid shell of the particles. Possible uses of these pH-sensitive nanoparticles include aggregating in acidic tumor microenvironments, escaping acidified endosomes, or aggregating in deep lung tissue for improved inhalation administration.  相似文献   

19.
In this study, immunization with a vaccine consisting of multiple F(abt’)2 fragments of affinity-purified antitetanus toxoid antibodies covalently bound to a carrier protein successfully induced antitetanus toxoid antibodies. Further studies showed that this vaccine preparation contained no biologically detectable tetanus antigen. The induced antitetanus antibody (Ab1t’) titer was higher than the titer of antibodies binding control antigens. The immunizing F(abt’)2 preparation did not elicit a secondary antitetanus response from mice primed with tetanus toxoid and, hence, appeared free of tetanus epitopes. The specificity of Ab1t’ was established by absorption and inhibition with antigen. Immunization with antitetanus F(abt’)2 (Ab1t’) fragments appears to have elicited naturally occurring autologous antitetanus toxoid antibody (Ab1t’) through an idiotypic pathway. As predicted by network theory, anti-idiotype (Ab2) and antitetanus (Ab1t’) cycled reciprocally. Clonotypic characterization of Ab1t’ using isoelectric focusing and affinity immunoblotting showed increases in Ab1t’ titer to be the result of increased synthesis by limited subsets of antitetanus toxoid B-cell clones and not increased synthesis by multiple clones, as is characteristic of antigen-driven Ab1 responses. Many Ab1 and Ab1t’ clonotypes had identical pIs, suggesting that they either share V region genes or are the product of the same B-cell clones. These findings indicate that immunization with polyclonal multivalent Ab1 preparations can trigger active synthesis of antibodies with the same specificity. The results provide further evidence for naturally occurring idiotypic cascades that could be exploited for studies of catalytic antibodies.  相似文献   

20.
The plant isolated antioxidant quercitrin has been encapsulated on poly-d,l-lactide (PLA) nanoparticles by solvent evaporation method to improve the solubility, permeability and stability of this molecule. The size of quercitrin-PLA nanoparticles is 250 ± 68 nm whereas that PLA nanoparticles is 195 ± 55 nm. The encapsulation efficiency of nanoencapsulated quercitrin evaluated by HPLC and antioxidant assay is 40%. The in vitro release kinetics of quercitrin under physiological condition reveals initial burst release followed by sustained release. Less fluorescence quenching is observed with equimolar concentration of PLA encapsulated quercitrin than free quercitrin. The presence of quercitrin specific peaks on FTIR of five times washed quercitrin loaded PLA nanoparticles provides an extra evidence for the encapsulation of quercitrin into PLA nanoparticles. These properties of quercitrin nanomedicine provide a new potential for the use of such less useful highly active antioxidant molecule towards the development of better therapeutic for intestinal anti-inflammatory effect and nutraceutical compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号