首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The accepted picture of the structure of a micelle in solution arises from the idea that the surfactant molecules self-assemble into a spherical aggregate, driven by the conflicting affinity of their head and tail groups with the solvent. It is also assumed that the micelle's size and shape can be explained by simple arguments involving volumetric packing parameters and electrostatic interactions. By using wide Q-range neutron diffraction measurements of H/D isotopically substituted solutions of decyltrimethylammonimum bromide (C(10)TAB) surfactants, we are able to determine the complete, atomistic structure of a micelle and its surroundings in solution. The properties of the micelle we extract are in agreement with previous experimental studies. We find that ~45 surfactant molecules aggregate to form a spherical micelle with a radius of gyration of 14.2 ? and that the larger micelles are more ellipsoidal. The surfactant tail groups are hidden away from the solvent to form a central dry hydrophobic core. This is surrounded by a disordered corona containing the surfactant headgroups, counterions, water, and some alkyl groups from the hydrophobic tails. We find a Stern layer of 0.7 bromide counterion per surfactant molecule, in which the bromide counterions maintain their hydration shells. The atomistic resolution of this technique provides us with unprecedented detail of the physicochemical properties of the micelle in its solvent.  相似文献   

2.
The self-assembly behavior of the triterpenoids asiatic acid (AA) and madecassic acid (MA), both widely studied bioactive phytochemicals that are similar in structure to bile salts, were investigated in aqueous solution through atomistic-level molecular dynamics (MD) simulation. AA and MA molecules initially distributed randomly in solution were observed to aggregate into micelles during 75 ns of MD simulation. A "hydrophobic contact criterion" was developed to identify micellar aggregates from the computer simulation results. From the computer simulation data, the aggregation number of AA and MA micelles, the monomer concentration, the principal moments of the micelle radius of gyration tensor, the one-dimensional growth exhibited by AA and MA micelles as the aggregation number increases, the level of internal ordering within AA and MA micelles (quantified using two different orientational order parameters), the local environment of atoms within AA and MA in the micellar environment, and the total, hydrophilic, and hydrophobic solvent accessible surface areas of the AA and MA micelles were each evaluated. The MD simulations conducted provide insights into the self-assembly behavior of structurally complex, nontraditional surfactants in aqueous solution. Motivated by the high computational cost required to obtain an accurate estimate of the critical micelle concentrations (CMCs) of AA and MA from evaluation of the average monomer concentration present in the AA and MA simulation cells, a modified computer simulation/molecular-thermodynamic model (referred to as the MCS-MT model) was formulated to quantify the free-energy change associated with optimal AA and MA micelle formation in order to predict the CMCs of AA and MA. The predicted CMC of AA was found to be 59 microM, compared with the experimentally measured CMC of 17 microM, and the predicted CMC of MA was found to be 96 microM, compared with the experimentally measured CMC of 62 microM. The AA and MA CMCs predicted using the MCS-MT model are much more accurate than the CMCs inferred from the monomer concentrations of AA and MA present in the simulation cells after micelle self-assembly (2390 microM and 11,300 microM, respectively). The theoretical modeling results obtained for AA and MA indicate that, by combining computer simulation inputs with molecular-thermodynamic models of surfactant self-assembly, reasonably accurate estimates of surfactant CMCs can be obtained with a fraction of the computational expense that would be required by using computer simulations alone.  相似文献   

3.
4.
On the basis of a detailed physicochemical model, a complete system of equations is formulated that describes the equilibrium between micelles and monomers in solutions of ionic surfactants and their mixtures with nonionic surfactants. The equations of the system express mass balances, chemical and mechanical equilibria. Each nonionic surfactant is characterized by a single thermodynamic parameter — its micellization constant. Each ionic surfactant is characterized by three parameters, including the Stern constant that quantifies the counterion binding. In the case of mixed micelles, each pair of surfactants is characterized with an interaction parameter, β, in terms of the regular solution theory. The comparison of the model with experimental data for surfactant binary mixtures shows that β is constant — independent of the micelle composition and electrolyte concentration. The solution of the system of equations gives the concentrations of all monomeric species, the micelle composition, ionization degree, surface potential and mean area per head group. Upon additional assumptions for the micelle shape, the mean aggregation number can be also estimated. The model gives quantitative theoretical interpretation of the dependence of the critical micellization concentration (CMC) of ionic surfactants on the ionic strength; of the CMC of mixed surfactant solutions, and of the electrolytic conductivity of micellar solutions. It turns out, that in the absence of added salt the conductivity is completely dominated by the contribution of the small ions: monomers and counterions. The theoretical predictions are in good agreement with experimental data.  相似文献   

5.
The mean aggregation numbers of mixed micelles composed of hydrocarbon surfactants (nonionic/nonionic and ionic/nonionic surfactants) have been determined by the intensity light-scattering method, in order to compare them with the values calculated by using the equations derived. The equations have been derived for representative micellar shapes (disk-like, rod-like, and spherical shapes) by making the assumptions that (i) the surface area of the hydrocarbon core of a mixed micelle is built up by independent contributions from each surfactant monomer, and (ii) the dimension of the hydrocarbon core is determined by the number of carbon atoms of a surfactant. The closest agreement of the observed aggregation numbers with the calculated ones has been obtained for the mixed micelle of an oblate ellipsoidal shape as a geometrical model for a disk-like micelle. This suggests that an oblate ellipsoidal shape may be more probable for a micelle formed at a moderate range of surfactant concentration than a prolate ellipsoidal (a rod-like) and a spherical shape if the assumptions (i) and (ii) hold. The equations presented here are useful, since they make it possible to calculate an accurate aggregation number of the mixed micelle of any composition from the aggregation numbers of the pure micelles of the components and the number of carbon atoms of component surfactants as long as there is no highly specific interaction between different surfactant components.  相似文献   

6.
7.
A first theoretical study of surfactant-stabilized carbon nanotube dispersions is presented. Density functional theory is used to compute potential of mean force between nanotubes in an aqueous solution of cationic surfactant n-decyltrimethylammonium chloride. In agreement with experimental results, it is found that stable dispersions can be prepared for surfactant bulk concentrations below the critical micelle concentration. Computed density profiles of head and tail segments indicate that surfactants adsorb on nanotube surfaces in a random fashion rather than form cylindrical micelles, which is also in agreement with recent small-angle neutron scattering measurements.  相似文献   

8.
The effect of a cationic monomer (N,N,N,N-trimethyl[methacryloxyethyl]ammonium methyl sulfate) on the formation, structure, and local dynamics of associates resulted from the interaction of the monomer with sodium dodecyl sulfate in aqueous solutions was studied by ESR spectroscopy. In the presence of the monomer, micelles are formed at concentrations much lower than the CMC of the pure surfactant with the monomer molecules that form a condensed layer of counterions around a micelle of sodium dodecyl sulfate. The binding of surfactant micelles with the cationic monomer causes a significant decrease in the local molecular mobility of dodecyl sulfate ions.  相似文献   

9.
Aqueous mixed micellar solutions of perfluoropolyether carboxylic salts with ammonium counterions have been studied by small-angle neutron scattering. Two surfactants differing in the tail length were mixed in proportions n2/n3 = 60/40 w/w, where n2 and n3 are the surfactants with two and three perfluoroisopropoxy units in the tail, respectively. The tails are chlorine-terminated. The mixed micellar solutions, in the concentration range 0.1-0.2 M and thermal interval 20-40 degrees C, show structural characteristics of the interfacial shell that are very similar to ammonium n2 micellar solutions previously investigated; thus, the physics of the interfacial region is dominated by the polar head and counterion. The shape and dimensions of the micelles are influenced by the presence of the n3 surfactant, whose chain length in the micelle is 2 A longer than that of the n2 surfactant. The n3 surfactant favors the ellipsoidal shape in the concentration range 0.1-0.2 M with a 1/2 ionization degree of n2 micelles. The very low surface charge of the mixed micelles is attributed to the increase in hydrophobic interactions between the surfactant tails, due to the longer n3 surfactant molecules in micelles. The closer packing of the tails decreases the micellar curvature and the repulsions between the polar heads, by surface charge neutralization of counterions migrating from the Gouy-Chapman diffuse layer, leading to micellar growth in ellipsoids with greater axial ratios.  相似文献   

10.
Densities of aqueous solutions of mixtures of dodecyltrimethylammonium chloride (DTAC) and dodecyltrimethylammonium bromide (DTAB) have been measured as a function of total molality at constant composition and the apparent molar volumes of the mixtures were derived from the density data. The partial molar volumes of monomeric surfactant mixtures, the molar volumes of mixed micelles, and the volumes of formation of mixed micelles were evaluated and are compared with those for decyltrimethylammonium bromide (DeTAB) and DTAB mixtures. The partial molar volumes of monomeric surfactant mixtures and the molar volumes of mixed micelles are observed to depend linearly on the monomer and micelle compositions, respectively. Although the volume of formation of mixed micelles of the DeTAB-DTAB mixture depends on the micellar composition, that of the DTAC-DTAB mixture is observed to be almost independent of the micellar composition. This suggests that the volumes of the counter ions in the micellar solutions are almost equal to those in the monomeric solutions.  相似文献   

11.
We propose a method for parametrization of implicit solvent models for the simulation of the self-assembly of ionic surfactants into micelles. The parametrization is carried out in two steps. The first step involves atomistic molecular dynamics simulations of headgroups and counterions with explicit solvent to determine structural properties. An implicit solvent model of the headgroup/counterion system is obtained by matching structural quantities between explicit solvent and implicit solvent systems. In the second step, we identify the solvophobic attractions between the tail beads. We determine the solvophobic parameters using grand canonical Monte Carlo simulations with histogram reweighting techniques. The matching objective for the identification of solvophobic attractions is the critical micelle concentration (cmc). We choose sodium dodecyl sulfate as the reference system. On the basis of hydrophobic parameters obtained from this particular model, we study specific ion effects (lithium and potassium instead of sodium) as well as the effect of cationic headgroups (dodecyltrimethylammonium bromide/chloride). Furthermore, the chain length dependence of micellization properties is investigated for sodium alkyl sulfate, with alkyl lengths between 6 and 14. All cases considered give results in broad agreement with experimental data, confirming the transferability of parameters and the generality of the approach.  相似文献   

12.
The microstructure of temperature-quenched solutions of reverse micelles formed by sodium, cobalt, ytterbium, and cobalt/ytterbium bis(2-ethylhexyl)sulfosuccinate in n-heptane has been investigated by SAXS and EXAFS. Some changes in the X-ray absorption spectra with respect to the same systems at room temperature have been observed. The analysis of the SAXS spectra leads to the hypothesis that at 77 K the closed spherical structure of reverse micelles is retained and that during the temperature quench they undergo a clustering process involving the transition from a quite random dispersion to the formation of more or less large clusters of strongly packed reverse micelles. This behavior is attributed to competitive effects caused by the temperature decrease. The prevalence of intermicellar attractive interactions with respect to Brownian motions leading to a collapse to more compact structure is in competition with the rapid decrease of reverse micelle diffusion rate involving a freezing of the local structures. In the case of cobalt, ytterbium, and cobalt/ytterbium bis(2-ethylhexyl)sulfosuccinate reverse micelles, further information from EXAFS measurements indicates that within the reverse micelle core exists a quite ordered nanosized domain composed of water, surfactant counterions, and oxygen atoms of the SO3- head groups. The conservation of local order and inverse structure during the clustering phenomenon that results from the fast freezing with liquid nitrogen of solutions of reverse micelles could have biological implications, i.e., the preservation of tissue samples at cryogenic temperatures.  相似文献   

13.
Discontinuous molecular dynamics simulations are performed on surfactant (HmTn)/solvent systems modeled as a mixture of single-sphere solvent molecules and freely jointed surfactant chains composed of m slightly solvent-philic head spheres (H) and n solvent-philic tail spheres (T), all of the same size. We use a square-well potential to account for the head-head, head-solvent, tail-tail, and tail-solvent interactions and a hard-sphere potential for the head-tail and solvent-solvent interactions. We first simulate homopolymer/supercritical CO2 (scCO2) systems to establish the appropriate interaction parameters for a surfactant/scCO2 system. Next, we simulate surfactant/scCO2 systems and explore the effect of the surfactant volume fraction, packing fraction, and temperature on the phase behavior. The transition from the two-phase region to the one-phase region is located by monitoring the contrast structure factor of the equilibrated surfactant/scCO2 system, and the micelle to unimer transition is located by monitoring the aggregate size distribution of the equilibrated surfactant/scCO2 system. We find a two-phase region, a micelle phase, and a unimer phase with increasing packing fraction at fixed temperature or with increasing temperature at fixed packing fraction. The phase diagram for the surfactant/scCO2 system in the surfactant volume fraction-packing fraction plane and the density dependence of the critical micelle concentration are in qualitative agreement with experimental observations. The phase behavior of a surfactant/scCO2 system can be directly related to the solubilities of the corresponding homopolymers that serve as the head and tail blocks for the surfactant. The influence of surfactant structure (head and tail lengths) on the phase transitions is explored.  相似文献   

14.
Micelle formation by short nonadditive hard surfactant chains was investigated at different size ratios, reduced densities, and nonadditivity parameters using molecular dynamics simulation. It was found that spherical, cylindrical, lamellar, and reverse micelles can form in systems with different head, tail, and solvent characteristics. Hard-core surfactant chains composed of a head segment and three tail segments were simulated in a solvent of hard spheres. The formation of micelles was found to be a strong function of the packing fraction and nonadditivity parameter. Micelles were more stable at higher densities and larger nonadditivity parameters. At lower densities, micelles tended to break into small, dynamic globules.  相似文献   

15.
A molecular dynamics simulation was performed for spherical and cylindrical hexadecyltrimethylammonium chloride micelles in aqueous solutions containing admixtures of isopropanol, acetone, and sodium benzoate. Local particle (atom, atomic group, and ion) density profiles were obtained depending on the distance to the center of a micelle. The stationary size of aggregates was determined, and the micelle surface area per surfactant polar head was estimated.  相似文献   

16.
The composition of mixed micelles and mixed micelle — solution interfaces changes with the concentration and molar ratio of the cationic and anionic surfactants present. The micelle — solution interface includes besides the headgroups of both surfactants, the counterions of the surfactant in excess. The finding of an enhanced binding of counterions to mixed micelles may be of some practical importance in decontamination.  相似文献   

17.
The aqueous solution of mixture of sodium decyl sulfate (SDeS) and decyltrimethylammonium bromide (DeTAB) has been found to form equilibrium multilamellar vesicles (MLV) spontaneously. We measured the surface tension of the aqueous solution of 1:1 mixture of SDeS and DeTAB as a function of temperature T at various molalities m under atmospheric pressure. The surface density, the entropy of adsorption and the entropy of vesicle formation are evaluated and compared with those of the decyltrimethylammonium decyl sulfate (DeTADeS) aqueous solution system to investigate the role of small counterions in the mechanism of equilibrium vesicle formation. The saturated surface density Gamma (H,C ) vs T curve of the SDeS/DeTAB system sits below that of the DeTADeS system. Therefore, sodium and bromide ions are negatively adsorbed and nevertheless, they neutralize the electric charge of the decyl sulfate ion DeS(-) and the decyltrimethylammonium ion DeTA(+) to some extent to weaken the electrostatic attraction between the polar head groups in the adsorbed film. The net surfactant concentration required for vesicle formation was larger in the SDeS/DeTAB system. Hence, the electrostatic attraction between the polar head groups of the surfactant ions which is one of the major driving forces for vesicle formation is weakened by the presence of the counterions Na(+) and Br(-). Small but distinct changes in the surface density and the entropies of MLV formation of the SDeS/DeTAB system from those of the DeTADeS system were also found.  相似文献   

18.
Molecular dynamics simulations are utilized to simulate a model liquid-vapor-amphiphile system. Amphiphilic surfactant molecules are modeled as dimers composed of a hydrophilic head and a hydrophobic tail. Three dimer models with three different head sizes and two different head-to-tail size ratios are studied. The surfactant molecules distribute preferentially at the interfaces at low concentrations and form micelles in the bulk liquid phase as the concentration increases. We find that the surface tension decreases as molecular concentration increases, with a reduction in the rate of decrease after micellization occurs. The extent to which a surfactant can reduce the surface tension at a given concentration is found to depend on the head size. Furthermore, the head size and concentration dependence of the surfactant tilt-angle distribution is studied and compared to experimental data.  相似文献   

19.
The exchange of a fluorocarbon-hydrocarbon hybrid surfactant between monomer and micelle states in deuterium oxide has been investigated through 19F NMR and 1H NMR experiments. The CF3 group in the surfactant gives two kinds of 19F NMR signals corresponding to the monomer and micelle states, indicating slow surfactant exchange on NMR time scale. The lifetime (taumic) of micelle, estimated by line shape analysis of the signals, is 2.0 ms at cmc, 102 to 103 times longer than that of general surfactant micelles. Pulsed-gradient spin-echo (PGSE) experiments show that the hybrid surfactant forms considerably small micelles with a hydrodynamic radius of 0.6 nm. In contrast, at a higher concentration where no slow surfactant exchange is observed, the micelle radius increases to 1.1 nm. The interdigitation between the surfactant molecules in the micelle will contribute to the unusually long lifetime, in other words, slow surfactant exchange on the NMR time scale.  相似文献   

20.
The premicellar and micelle formation behavior of dye surfactant ion pairs in aqueous solutions monitored by surface tension and spectroscopic measurements has been described. The measurements have been made for three anionic sulfonephthalein dyes and cationic surfactants of different chain lengths, head groups, and counterions. The observations have been attributed to the formation of closely packed dye surfactant ion pairs which is similar to nonionic surfactants in very dilute concentrations of the surfactant. These ion pairs dominate in the monolayer at the air-water interface of the aqueous dye surfactant solutions below the CMC of the pure surfactant. It has been shown that the dye in the ion pair deprotonates on micelle formation by the ion pair surfactants at near CMC but submicellar surfactant concentrations. The results of an equilibrium study at varying pH agree with the model of deprotonated 1:1 dye-surfactant ion pair formation in the near CMC submicellar solutions. At concentrations above the CMC of the cationic surfactant the dye is solubilized in normal micelles and the monolayer at the air-water interface consists of the cationic surfactant alone even in the presence of the dyes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号