首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jin Ho Kwak 《Discrete Mathematics》2008,308(11):2156-2166
In this paper, we classify the reflexible regular orientable embeddings and the self-Petrie dual regular orientable embeddings of complete bipartite graphs. The classification shows that for any natural number n, say (p1,p2,…,pk are distinct odd primes and ai>0 for each i?1), there are t distinct reflexible regular embeddings of the complete bipartite graph Kn,n up to isomorphism, where t=1 if a=0, t=2k if a=1, t=2k+1 if a=2, and t=3·2k+1 if a?3. And, there are s distinct self-Petrie dual regular embeddings of Kn,n up to isomorphism, where s=1 if a=0, s=2k if a=1, s=2k+1 if a=2, and s=2k+2 if a?3.  相似文献   

2.
Let (μt)t=0 be a k-variate (k?1) normal random walk process with successive increments being independently distributed as normal N(δ, R), and μ0 being distributed as normal N(0, V0). Let Xt have normal distribution N(μt, Σ) when μt is given, t = 1, 2,….Then the conditional distribution of μt given X1, X2,…, Xt is shown to be normal N(Ut, Vt) where Ut's and Vt's satisfy some recursive relations. It is found that there exists a positive definite matrix V and a constant θ, 0 < θ < 1, such that, for all t?1,
|R12(V?1t?V?1R12|<θt|R12(V?10?V?1)R12|
where the norm |·| means that |A| is the largest eigenvalue of a positive definite matrix A. Thus, Vt approaches to V as t approaches to infinity. Under the quadratic loss, the Bayesian estimate of μt is Ut and the process {Ut}t=0, U0=0, is proved to have independent successive increments with normal N(θ, Vt?Vt+1+R) distribution. In particular, when V0 =V then Vt = V for all t and {Ut}t=0 is the same as {μt}t=0 except that U0 = 0 and μ0 is random.  相似文献   

3.
Let K be a field and t?0. Denote by Bm(t,K) the supremum of the number of roots in K?, counted with multiplicities, that can have a non-zero polynomial in K[x] with at most t+1 monomial terms. We prove, using an unified approach based on Vandermonde determinants, that Bm(t,L)?t2Bm(t,K) for any local field L with a non-archimedean valuation v:LR∪{∞} such that vZ≠0|≡0 and residue field K, and that Bm(t,K)?(t2t+1)(pf−1) for any finite extension K/Qp with residual class degree f and ramification index e, assuming that p>t+e. For any finite extension K/Qp, for p odd, we also show the lower bound Bm(t,K)?(2t−1)(pf−1), which gives the sharp estimation Bm(2,K)=3(pf−1) for trinomials when p>2+e.  相似文献   

4.
Given positive integers n,k,t, with 2?k?n, and t<2k, let m(n,k,t) be the minimum size of a family F of (nonempty distinct) subsets of [n] such that every k-subset of [n] contains at least t members of F, and every (k-1)-subset of [n] contains at most t-1 members of F. For fixed k and t, we determine the order of magnitude of m(n,k,t). We also consider related Turán numbers T?r(n,k,t) and Tr(n,k,t), where T?r(n,k,t) (Tr(n,k,t)) denotes the minimum size of a family such that every k-subset of [n] contains at least t members of F. We prove that T?r(n,k,t)=(1+o(1))Tr(n,k,t) for fixed r,k,t with and n→∞.  相似文献   

5.
Let X1, X2 ,…, Xp be p random variables with joint distribution function F(x1 ,…, xp). Let Z = min(X1, X2 ,…, Xp) and I = i if Z = Xi. In this paper the problem of identifying the distribution function F(x1 ,…, xp), given the distribution Z or that of the identified minimum (Z, I), has been considered when F is a multivariate normal distribution. For the case p = 2, the problem is completely solved. If p = 3 and the distribution of (Z, I) is given, we get a partial solution allowing us to identify the independent case. These results seem to be highly nontrivial and depend upon Liouville's result that the (univariate) normal distribution function is a nonelementary function. Some other examples are given including the bivariate exponential distribution of Marshall and Olkin, Gumbel, and the absolutely continuous bivariate exponential extension of Block and Basu.  相似文献   

6.
In this article we evaluate the Fourier transforms of retarded Lorentz-invariant functions (and distributions) as limits of Laplace transforms. Our method works generally for any retarded Lorentz-invariant functions φ(t) (t?Rn) which is, besides, a continuous function of slow growth. We give, among others, the Fourier transform of GR(t, α, m2, n) and GA(t, α, m2, n), which, in the particular case α = 1, are the characteristic functions of the volume bounded by the forward and the backward sheets of the hyperboloid u = m2 and by putting α = ?k are the derivatives of k-order of the retarded and the advanced-delta on the hyperboloid u = m2. We also obtain the Fourier transform of the function W(t, α, m2, n) introduced by M. Riesz (Comm. Sem. Mat. Univ. Lund4 (1939)). We finish by evaluating the Fourier transforms of the distributional functions GR(t, α, m2, n), GA(t, α, m2, n) and W(t, α, m2, n) in their singular points.  相似文献   

7.
8.
Homoclinic solutions for a class of the second order Hamiltonian systems   总被引:2,自引:0,他引:2  
We study the existence of homoclinic orbits for the second order Hamiltonian system , where qRn and VC1(R×Rn,R), V(t,q)=-K(t,q)+W(t,q) is T-periodic in t. A map K satisfies the “pinching” condition b1|q|2?K(t,q)?b2|q|2, W is superlinear at the infinity and f is sufficiently small in L2(R,Rn). A homoclinic orbit is obtained as a limit of 2kT-periodic solutions of a certain sequence of the second order differential equations.  相似文献   

9.
We give a combinatorial proof of Harer and Zagier's formula for the disjoint cycle distribution of a long cycle multiplied by an involution with no fixed points, in the symmetric group on a set of even cardinality. The main result of this paper is a direct bijection of a set Bp,k, the enumeration of which is equivalent to the Harer-Zagier formula. The elements of Bp,k are of the form (μ,π), where μ is a pairing on {1,…,2p}, π is a partition into k blocks of the same set, and a certain relation holds between μ and π. (The set partitions π that can appear in Bp,k are called “shift-symmetric”, for reasons that are explained in the paper.) The direct bijection for Bp,k identifies it with a set of objects of the form (ρ,t), where ρ is a pairing on a 2(p-k+1)-subset of {1,…,2p} (a “partial pairing”), and t is an ordered tree with k vertices. If we specialize to the extreme case when p=k-1, then ρ is empty, and our bijection reduces to a well-known tree bijection.  相似文献   

10.
A graph G is called integral if all eigenvalues of its adjacency matrix A(G) are integers. In this paper, the trees T(p,q)•T(r,m,t) and K1,sT(p,q)•T(r,m,t) of diameter 6 are defined. We determine their characteristic polynomials. We also obtain for the first time sufficient and conditions for them to be integral. To do so, we use number theory and apply a computer search. New families of integral trees of diameter 6 are presented. Some of these classes are infinite. They are different from those in the existing literature. We also prove that the problem of finding integral trees of diameter 6 is equivalent to the problem of solving some Diophantine equations. We give a positive answer to a question of Wang et al. [Families of integral trees with diameters 4, 6 and 8, Discrete Appl. Math. 136 (2004) 349-362].  相似文献   

11.
We prove the boundedness on L p , 1?<?p?<?∞, of operators on manifolds which arise by taking conditional expectation of transformations of stochastic integrals. These operators include various classical operators such as second order Riesz transforms and operators of Laplace transform-type.  相似文献   

12.
An r-edge-coloring of a graph G is a surjective assignment of r colors to the edges of G. A heterochromatic tree is an edge-colored tree in which any two edges have different colors. The heterochromatic tree partition number of an r-edge-colored graph G, denoted by tr(G), is the minimum positive integer p such that whenever the edges of the graph G are colored with r colors, the vertices of G can be covered by at most p vertex-disjoint heterochromatic trees. In this paper we give an explicit formula for the heterochromatic tree partition number of an r-edge-colored complete bipartite graph Km,n.  相似文献   

13.
Given positive integers let z(m,n,s,t) be the maximum number of ones in a (0,1) matrix of size m×n that does not contain an all ones submatrix of size s×t. We show that if s?2 and t?2, then for every k=0,…,s-2,
z(m,n,s,t)?(s-k-1)1/tnm1-1/t+kn+(t-1)m1+k/t.  相似文献   

14.
Let ΩRN be a bounded domain and let μ be an admissible measure on ∂Ω. We show in the first part that if Ω has the H1-extension property, then a realization of the Laplace operator with generalized nonlinear Robin boundary conditions, formally given by on ∂Ω, generates a strongly continuous nonlinear submarkovian semigroup SB=(SB(t))t?0 on L2(Ω). We also obtain that this semigroup is ultracontractive in the sense that for every u,vLp(Ω), p?2 and every t>0, one has
  相似文献   

15.
A random vector is said to have a 1-symmetric distribution if its characteristic function is of the form φ(|t1| + … + |tn|). 1-Symmetric distributions are characterized through representations of the admissible functions φ and through stochastic representations of the radom vectors, and some of their properties are studied.  相似文献   

16.
Let B1, B2, ... be a sequence of independent, identically distributed random variables, letX0 be a random variable that is independent ofBn forn?1, let ρ be a constant such that 0<ρ<1 and letX1,X2, ... be another sequence of random variables that are defined recursively by the relationshipsXnXn-1+Bn. It can be shown that the sequence of random variablesX1,X2, ... converges in law to a random variableX if and only ifE[log+¦B1¦]<∞. In this paper we let {B(t):0≦t<∞} be a stochastic process with independent, homogeneous increments and define another stochastic process {X(t):0?t<∞} that stands in the same relationship to the stochastic process {B(t):0?t<∞} as the sequence of random variablesX1,X2,...stands toB1,B2,.... It is shown thatX(t) converges in law to a random variableX ast →+∞ if and only ifE[log+¦B(1)¦]<∞ in which caseX has a distribution function of class L. Several other related results are obtained. The main analytical tool used to obtain these results is a theorem of Lukacs concerning characteristic functions of certain stochastic integrals.  相似文献   

17.
Let {Xt; t = 1, 2,…} be a linear process with a location parameter θ defined by Xt ? θ = Σ0grZt?r where {Zt; t = 0, ±1,…} is a sequence of independent and identically distributed random variables, with EZ1δ < ∞ for some δ > 0. If δ ? 1 we assume further than E(Z1) = 0. Let η = δ if 0 < δ < 2, and η = 2 if δ ? 2. Then assume that Σ0grη < ∞. Consider the class of estimators θn given by θn = Σ1ncntXtwhere cnt is of the form cnt = Σp = 0sβnptp for some s ? 0. An attempt has been made to investigate the distributional properties of θn in large samples for various choices of βnp (0 ? p ? s), s, and the distribution of Z1 under the constraints Σ0rkgr = 0, 0 ? k ? q where q in an arbitrary integer, 0 ? q ? s.  相似文献   

18.
Let {X1(t)}0≤t≤1 and {X2(t)}0≤t≤1 be two independent continuous centered Gaussian processes with covariance functions R1 and R2. We show that if the covariance functions are of finite p-variation and q-variation respectively and such that p−1+q−1>1, then the Lévy area can be defined as a double Wiener-Itô integral with respect to an isonormal Gaussian process induced by X1 and X2. Moreover, some properties of the characteristic function of that generalised Lévy area are studied.  相似文献   

19.
We introduce the distribution function Fn(q,t) of a pair of statistics on Catalan words and conjecture Fn(q,t) equals Garsia and Haiman's q,t-Catalan sequence Cn(q,t), which they defined as a sum of rational functions. We show that Fn,s(q,t), defined as the sum of these statistics restricted to Catalan words ending in s ones, satisfies a recurrence relation. As a corollary we are able to verify that Fn(q,t)=Cn(q,t) when t=1/q. We also show the partial symmetry relation Fn(q,1)=Fn(1,q). By modifying a proof of Haiman of a q-Lagrange inversion formula based on results of Garsia and Gessel, we obtain a q-analogue of the general Lagrange inversion formula which involves Catalan words grouped according to the number of ones at the end of the word.  相似文献   

20.
Let ø(t) (tRn) be a retarded, Lorentz-invariant function which satisfies, in addition, condition (c). We call “R” the family of such functions. Let f(z) be the Laplace transform of ø(t) ∈ R. We prove (Theorem 1) that f(z) can be expressed as a K-transform (formula (I, 2; 1)). We apply this formula to evaluate several Laplace transforms. We show that it affords simple proofs of important known results. Formula (I, 2; 1) is an effective complement to L. Schwartz' method of evaluating Fourier transforms via Laplace transforms (“Théorie des distributions,” p. 264, Hermann, Paris, 1966). We think this is the most useful application of our formula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号