首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到1条相似文献,搜索用时 0 毫秒
1.
The asymptotic properties of a family of minimum quantile distance estimators for randomly censored data sets are considered. These procedures produce an estimator of the parameter vector that minimizes a weighted L2 distance measure between the Kaplan-Meier quantile function and an assumed parametric family of quantile functions. Regularity conditions are provided which insure that these estimators are consistent and asymptotically normal. An optimal weight function is derived for single parameter families, which, for location/scale families, results in censored sample analogs of estimators such as those suggested by Parzen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号