首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a random walk X n in ℤ+, starting at X 0=x≥0, with transition probabilities
and X n+1=1 whenever X n =0. We prove as n ∞ when δ∈(1,2). The proof is based upon the Karlin-McGregor spectral representation, which is made explicit for this random walk.  相似文献   

2.
We consider a random walk on the support of an ergodic stationary simple point process on ℝd, d≥2, which satisfies a mixing condition w.r.t. the translations or has a strictly positive density uniformly on large enough cubes. Furthermore the point process is furnished with independent random bounded energy marks. The transition rates of the random walk decay exponentially in the jump distances and depend on the energies through a factor of the Boltzmann-type. This is an effective model for the phonon-induced hopping of electrons in disordered solids within the regime of strong Anderson localization. We show that the rescaled random walk converges to a Brownian motion whose diffusion coefficient is bounded below by Mott's law for the variable range hopping conductivity at zero frequency. The proof of the lower bound involves estimates for the supercritical regime of an associated site percolation problem.  相似文献   

3.
We consider a random walk on the support of an ergodic simple point process on , d ≥ 2, furnished with independent energy marks. The jump rates of the random walk decay exponentially in the jump length and depend on the energy marks via a Boltzmann–type factor. This is an effective model for the phonon–induced hopping of electrons in disordered solids in the regime of strong Anderson localization. Under some technical assumption on the point process we prove an upper bound for the diffusion matrix of the random walk in agreement with Mott law. A lower bound for d ≥ 2 in agreement with Mott law was proved in [8].  相似文献   

4.
We consider a branching random walk in random environment on d where particles perform independent simple random walks and branch, according to a given offspring distribution, at a random subset of sites whose density tends to zero at infinity. Given that initially one particle starts at the origin, we identify the critical rate of decay of the density of the branching sites separating transience from recurrence, i.e., the progeny hits the origin with probability <1 resp. =1. We show that for d3 there is a dichotomy in the critical rate of decay, depending on whether the mean offspring at a branching site is above or below a certain value related to the return probability of the simple random walk. The dichotomy marks a transition from local to global behavior in the progeny that hits the origin. We also consider the situation where the branching sites occur in two or more types, with different offspring distributions, and show that the classification is more subtle due to a possible interplay between the types. This note is part of a series of papers by the second author and various co-authors investigating the problem of transience versus recurrence for random motions in random media.  相似文献   

5.
We simulate loop-erased random walks on simple (hyper-)cubic lattices of dimensions 2, 3 and 4. These simulations were mainly motivated to test recent two loop renormalization group predictions for logarithmic corrections in d=4, simulations in lower dimensions were done for completeness and in order to test the algorithm. In d=2, we verify with high precision the prediction D=5/4, where the number of steps n after erasure scales with the number N of steps before erasure as nN D/2. In d=3 we again find a power law, but with an exponent different from the one found in the most precise previous simulations: D=1.6236±0.0004. Finally, we see clear deviations from the naive scaling nN in d=4. While they agree only qualitatively with the leading logarithmic corrections predicted by several authors, their agreement with the two-loop prediction is nearly perfect.  相似文献   

6.
7.
We consider some statistical properties of simple random walks on fractal structures viewed as networks of sites and bonds: range, renewal theory, mean first passage time, etc. Asymptotic behaviors are shown to be controlled by the fractal (¯d) and spectral (¯d) dimensionalities of the considered structure. A simple decimation procedure giving the value of (¯d) is outlined and illustrated in the case of the Sierpinski gaskets. Recent results for the trapping problem, the self-avoiding walk, and the true-self-avoiding walk are briefly reviewed. New numerical results for diffusion on percolation clusters are also presented.  相似文献   

8.
We consider simple random walk on the incipient infinite cluster for the spread-out model of oriented percolation on . In dimensions d > 6, we obtain bounds on exit times, transition probabilities, and the range of the random walk, which establish that the spectral dimension of the incipient infinite cluster is , and thereby prove a version of the Alexander–Orbach conjecture in this setting. The proof divides into two parts. One part establishes general estimates for simple random walk on an arbitrary infinite random graph, given suitable bounds on volume and effective resistance for the random graph. A second part then provides these bounds on volume and effective resistance for the incipient infinite cluster in dimensions d > 6, by extending results about critical oriented percolation obtained previously via the lace expansion.  相似文献   

9.
A variation of the Pearson-Rayleigh random walk in which the steps are i.i.d. random vectors of exponential length and uniform orientation is considered. Conditioned on the total path length, the probability density function of the position of the walker after n steps is determined analytically in one and two dimensions. It is shown that in two dimensions n = 3 marks a critical transition point in the behavior of the random walk. By taking less than three steps and walking a total length l, one is more likely to end the walk near the boundary of the disc of radius l, while by taking more than three steps one is more likely to end near the origin. Somehow surprisingly, by taking exactly three steps one can end uniformly anywhere inside the disc of radius l. This means that conditioned on l, the sum of three vectors of exponential length and uniform direction has a uniform probability density. While the presented analytic approach provides a complete solution for all n, it becomes intractable in higher dimensions. In this case, it is shown that a necessary condition to have a uniform density in dimension d is that 2(d + 2)/d is an integer, equal to n + 1.  相似文献   

10.
A constrained diffusive random walk of n steps in ℝ d and a random flight in ℝ d , which are equivalent, were investigated independently in recent papers (J. Stat. Phys. 127:813, 2007; J. Theor. Probab. 20:769, 2007, and J. Stat. Phys. 131:1039, 2008). The n steps of the walk are independent and identically distributed random vectors of exponential length and uniform orientation. Conditioned on the sum of their lengths being equal to a given value l, closed-form expressions for the distribution of the endpoint of the walk were obtained altogether for any n for d=1,2,4. Uniform distributions of the endpoint inside a ball of radius l were evidenced for a walk of three steps in 2D and of two steps in 4D.  相似文献   

11.
This paper is concerned with the numerical simulation of a random walk in a random environment in dimension d = 2. Consider a nearest neighbor random walk on the 2-dimensional integer lattice. The transition probabilities at each site are assumed to be themselves random variables, but fixed for all time. This is the random environment. Consider a parallel strip of radius R centered on an axis through the origin. Let X R be the probability that the walk that started at the origin exits the strip through one of the boundary lines. Then X R is a random variable, depending on the environment. In dimension d = 1, the variable X R converges in distribution to the Bernoulli variable, X = 0, 1 with equal probability, as R . Here the 2-dimensional problem is studied using Gauss-Seidel and multigrid algorithms.  相似文献   

12.
We study the behavior of the random walk on the infinite cluster of independent long-range percolation in dimensions d= 1,2, where x and y are connected with probability . We show that if d<s<2d, then the walk is transient, and if s≥ 2d, then the walk is recurrent. The proof of transience is based on a renormalization argument. As a corollary of this renormalization argument, we get that for every dimension d≥ 1, if d>s>2d, then there is no infinite cluster at criticality. This result is extended to the free random cluster model. A second corollary is that when d≥& 2 and d>s>2d we can erase all long enough bonds and still have an infinite cluster. The proof of recurrence in two dimensions is based on general stability results for recurrence in random electrical networks. In particular, we show that i.i.d. conductances on a recurrent graph of bounded degree yield a recurrent electrical network. Received: 27 October 2000 / Accepted: 29 November 2001  相似文献   

13.
We consider random walks on Z d with transition ratesp(x, y) given by a random matrix. Ifp is a small random perturbation of the simple random walk, we show that the walk remains diffusive for almost all environmentsp ifd>2. The result also holds for a continuous time Markov process with a random drift. The corresponding path space measures converge weakly, in the scaling limit, to the Wiener process, for almost everyp.Dedicated to Joel Lebowitz on his 60th birthdaySupported by NSF-grant DMS-8903041  相似文献   

14.
We prove an almost sure invariance principle for a random walker among i.i.d. conductances in ℤ d , d≥2. We assume conductances are bounded from above but we do not require that they are bounded from below.  相似文献   

15.
We show that the statistics of loop erased random walks above the upper critical dimension, 4, are different between the torus and the full space. The typical length of the path connecting a pair of sites at distance L, which scales as L2 in the full space, changes under the periodic boundary conditions to Ld/2. The results are precise for dimensions ≥5; for the dimension d=4 we prove an upper bound, conjecturally sharp up to subpolyonmial factors.  相似文献   

16.
We investigate the dynamics of a random walk in a random multiplicative medium. This results in a random, but correlated, multiplicative process for the spatial distribution of random walkers. We show how the details of these correlations determine the asymptotic properties of the walk, i.e., the central limit theorem does not apply to these multiplicative processes. We also study a periodic source-trap medium in which a unit cell contains one source, followed byL–1 traps. We calculate the asymptotic behavior of the number of particles, and determine the conditions for which there is growth or decay in this average number. Finally, we discuss the asymptotic behavior of a random walk in the presence of randomly distributed, partially-absoprbing traps. For this case, a temporal regime of purely exponential decay of the density can occur, before the asymptotic stretched exponential decay, exp(–at 1/3), sets in.  相似文献   

17.
We investigate in this work the asymptotic behavior of an anisotropic random walk on the supercritical cluster for bond percolation on d, d2. In particular we show that for small anisotropy the walk behaves in a ballistic fashion, whereas for strong anisotropy the walk is sub-diffusive. For arbitrary anisotropy, we also prove the directional transience of the walk and construct a renewal structure.  相似文献   

18.
We study various statistical properties of real roots of three different classes of random polynomials which recently attracted a vivid interest in the context of probability theory and quantum chaos. We first focus on gap probabilities on the real axis, i.e. the probability that these polynomials have no real root in a given interval. For generalized Kac polynomials, indexed by an integer d, of large degree n, one finds that the probability of no real root in the interval [0,1] decays as a power law n θ(d) where θ(d)>0 is the persistence exponent of the diffusion equation with random initial conditions in spatial dimension d. For n≫1 even, the probability that they have no real root on the full real axis decays like n −2(θ(2)+θ(d)). For Weyl polynomials and Binomial polynomials, this probability decays respectively like and where θ is such that in large dimension d. We also show that the probability that such polynomials have exactly k roots on a given interval [a,b] has a scaling form given by where N ab is the mean number of real roots in [a,b] and a universal scaling function. We develop a simple Mean Field (MF) theory reproducing qualitatively these scaling behaviors, and improve systematically this MF approach using the method of persistence with partial survival, which in some cases yields exact results. Finally, we show that the probability density function of the largest absolute value of the real roots has a universal algebraic tail with exponent −2. These analytical results are confirmed by detailed numerical computations. Some of these results were announced in a recent letter (Schehr and Majumdar in Phys. Rev. Lett. 99:060603, 2007).  相似文献   

19.
In this paper, we analytically discuss the scaling properties of the average square end-to-end distance 〈R2〉for anisotropic random walk in D-dimensional space (D≥2), and the returning probability Pn( r0) for the walker into a certain neighborhood of the origin. We will not only give the calculating formula for 〈R2〉and Pn(r0), but also point out that if there is a symmetric axis for the distribution of the probability density of a single step displacement, we always obtain 〈R2⊥n〉~n, where ⊥ refers to the projections of the displacement perpendicular to each symmetric axes of the walk; in D-dimensional space with D symmetric axes perpendicular to each other, we always have 〈Rn2〉~n and the random walk will be like a purely random motion; if the number of inter-perpendicular symmetric axis is smaller than the dimensions of the space, we must have 〈Rn2〉~n2 for very large n and the walk will be like a ballistic motion. It is worth while to point out that unlike the isotropic random walk in one and two dimensions, which is certain to return into the neighborhood of the origin, generally there is only a nonzero probability for the anisotropic random walker in two dimensions to return to the neighborhood.  相似文献   

20.
This paper deals with a new class of random flights in ℝ d , d≥2, characterized by non-uniform probability distributions on the multidimensional sphere. These random motions differ from similar models appeared in literature where the directions are taken according to the uniform law. The family of angular probability distributions introduced in this paper depends on a parameter ν≥0, which gives the anisotropy of the motion. Furthermore, we assume that the number of changes of direction performed by the random flight is fixed. The time lengths between two consecutive changes of orientation have joint probability distribution given by a Dirichlet density function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号