首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metal‐containing polymer hydrogels have attracted increasing interest in recent years due to their outstanding properties such as biocompatibility, recoverability, self‐healing, and/or redox activity. In this short review, methods for the preparation of metal‐containing polymer hydrogels are introduced and an overview of these hydrogels with various functionalities is given. It is hoped that this short update can stimulate innovative ideas to promote the research of metal‐containing hydrogels in the communities.

  相似文献   


2.
Electrohydrodynamic cojetting has been employed to synthesize compartmentalized microfibers from thermally responsive hydrogels. The synthesis of the hydrogels as well as their transformation into compartmentalized microcylinders is discussed. After programmable shape‐shifting, snail‐like particles are obtained that undergo functional and structural reconfiguration in response to a change in temperature.

  相似文献   


3.
The synthesis of tetracene‐ and pentacene‐annulated norbornadienes, formed through the Diels–Alder reaction of a dehydroacene with cyclopentadiene is reported. Ring‐opening metathesis polymerization (ROMP) leads to polymers that are investigated with respect to their physical, optical, and electronic properties by gel permeation chromatography (GPC), UV–vis spectroscopy, and cyclic voltammetry. The pentacene‐containing polymer P1 is successfully integrated into an organic field‐effect transistor (OFET); the tetracene‐containing polymer P2 is integrated into an organic light‐emitting diode (OLED).

  相似文献   


4.
Novel supramolecular phosphorescent polymers (SPPs) are synthesized as a new class of solution‐processable electroluminescent emitters. The formation of these SPPs takes advantage of the efficient non‐bonding assembly between bis(dibenzo‐24‐crown‐8)‐functionalized iridium complex monomer and bis(dibenzylammonium)‐tethered co‐monomer, which is monitored by 1H NMR spectroscopy and viscosity measurements. These SPPs show good film morphology and an intrinsic glass transition with a Tg of 94–116 °C. Noticeably, they are highly photoluminescent in solid state with quantum efficiency up to ca. 78%. The photophysical and electroluminescent properties are strongly dependent on the molecular structures of the iridium complex monomers.

  相似文献   


5.
Microdevices designed for practical environmental pollution monitoring need to detect specific pollutants such as dioxins. Bisphenol A (BPA) has been widely used as a monomer for the synthesis of polycarbonate and epoxy resins. However, the recent discovery of its high potential ability to disrupt human endocrine systems has made the development of smart systems and microdevices for its detection and removal necessary. Molecule‐responsive microsized hydrogels with β‐cycrodextrin (β‐CD) as ligands are prepared by photopolymerization using a fluorescence microscope. The molecule‐responsive micro‐hydrogels show ultra‐quick shrinkage in response to target BPA. Furthermore, the flow rate of a microchannel is autonomously regulated by the molecule‐responsive shrinking of their hydrogels as smart microvalves.

  相似文献   


6.
Endowing unimolecular soft nanoobjects with biomimetic functions is attracting significant interest in the emerging field of single‐chain technology. Inspired by the compartmentalized structure and polymerase activity of metalloenzymes, copper‐containing compact nanoglobules have been designed, synthesized, and characterized endowed with metalloenzyme mimicking characteristics toward controlled synthesis of water‐soluble polymers and thermoresponsive hydrogels. When compared to metalloenzymes, artificial nanoobjects endowed with metalloenzyme mimicking characteristics offer increased stability against thermal changes and reduced degradability by hydrolytic enzymes.

  相似文献   


7.
A simple strategy is provided to construct a novel pH‐ and sugar‐induced shape memory hydrogel based on dynamic phenylboronic acid (PBA)–diol interactions formed by PBA‐modified sodium alginate (Alg‐PBA) and poly(vinyl alcohol) (PVA). The dynamic PBA–diol ester bonds serve as temporary cross‐links and stabilize the deformed shape of the hydrogel. The disassociation of the PBA–diol ester bonds is explored in acidic conditions and aqueous solutions of glucose and fructose, which endow the hydrogel with shape memory performances.

  相似文献   


8.
A thermo‐, photo‐ and chemoresponsive shape‐memory material is successfully prepared by introducing α‐cyclodextrin (αCD) and azobenzene (Azo) into a poly(acrylate acid)/alginate (PAA/Alg) network. The tri‐stimuli‐responsive formation/dissociation of αCD‐Azo acts as molecular switches freezing or increasing the molecular mobility. The resulting film herein can be processed into temporary shapes as needed and recovers its initial shape upon the application of light irradiation, heating, or chemical agent independently. Furthermore, the agar diffusion test suggests that the α‐CD‐Alg/Azo‐PAA has good biocompatibility for L929 fibroblast‐like cells.

  相似文献   


9.
The application of cyclodextrin (CD)‐based host–guest interactions towards the fabrication of functional supramolecular assemblies and hydrogels is of particular interest in the field of biomedicine. However, as of late they have found new applications as advanced functional materials (e.g., actuators and self‐healing materials), which have renewed interest across a wide range of fields. Advanced supramolecular materials synthesized using this noncovalent interaction, exhibit specificity and reversibility, which can be used to impart reversible cross‐linking, specific binding sites, and functionality. In this review, various functional CD‐based supramolecular assemblies and hydrogels will be outlined with the focus on recent advances. In addition, an outlook will be provided on the direction of this rapidly developing field.

  相似文献   


10.
This communication describes the first application of cycloaddition between an in situ generated nitrile oxide with norbornene leading to a polymer crosslinking reaction for the preparation of poly(ethylene glycol) hydrogels under physiological conditions. Hydrogels with high water content and robust physical strength are readily formed within 2–5 min by a simple two‐solution mixing method which allows 3D encapsulation of neuronal cells. This bioorthogonal crosslinking reaction provides a simple yet highly effective method for preparation of hydrogels to be used in bioengineering.

  相似文献   


11.
A novel one‐component type II polymeric photoinitiator, poly(vinyl alcohol)–thioxanthone (PVA–TX), is synthesized by a simple acetalization process and characterized. PVA–TX enables photopolymerization of methyl methacrylate and acrylamide in both organic and aqueous media. Photopolymerization proceeds even in the absence of a co‐initiator since PVA–TX possesses both chromophoric and hydrogen donating sites in the structure.

  相似文献   


12.
Hierarchical self‐assembly of transient composite hydrogels is demonstrated through a two‐step, orthogonal strategy using nanoparticle tectons interconnected through metal–ligand coordination complexes. The resulting materials are highly tunable with moduli and viscosities spanning many orders of magnitude, and show promising self‐healing properties, while maintaining complete optical transparency.

  相似文献   


13.
The chemical synthesis of a novel polyfuran, poly(2,3‐bis(hexylthio)‐[1,4]dithiino[2,3‐c]furan) ( PBDF ), substituted at the 2,3‐positions with an S‐alkylated dithiin unit, is reported. The new polymer has been characterized in terms of its electronic absorption, electrochemical, and thermal properties. Employment of the dithiin moiety provides intrinsic additional electroactivity, as well as a functional handle for substitution with alkyl groups, enhancing the processability of the polymer. The new polymer is compared with the closely related and well‐established literature compounds PEDOT and PEDTT as well‐studied, highly chalcogenated polythiophenes.

  相似文献   


14.
Organic electrochromic materials change color rapidly under applied potential. A butterfly‐shaped compound, 5,5′,‐5″,‐5′″‐(thieno[3,2‐b]thiophene‐2,3,5,6‐tetrayl) tetrakis‐(2,3‐dihydrothieno[3,4‐b][1,4]dioxine) (t‐EDOT‐TT) is synthesized for the first time and polymerized at different potentials via electropolymerization technique. By applying different polymerization potentials, the optical and electrochromic properties of this newly synthesized polymer can be tuned. Owing to the dependence of functional group position in the polymer structure on the redox potential, this polymer can be utilized in very interesting organic optoelectronic applications.

  相似文献   


15.
Multivalent binding is a key for many critical biological processes and unique recognition and specificity in binding enables many of different glycans and proteins to work in a great harmony within the human body. In this study, the binding kinetics of synthetic glycopolypeptides to the dendritic cell lectin DC‐SIGN and their inhibition potential for DC‐SIGN interactions with the gp120 envelope glycoprotein of HIV‐1 (gp120) are investigated.

  相似文献   


16.
Diselenide‐containing polymers are facilely synthesized from polymers prepared by atom transfer radical polymerization (ATRP). Benefiting from the ATRP technology, this protocol provides a flexible route for controlling the polymer structure, which allows for a great variety of architectures of selenium‐containing polymer materials for applications in various fields. The oxidative and reductive responsive behavior of the obtained diselenide‐containing polymers is also investigated.

  相似文献   


17.
In this work, activated ester chemistry is employed to synthesize biocompatible and readily functionalizable polymersomes. Via aminolysis of pentafluorophenyl methacrylate‐based precursor polymers, an N‐(2‐hydroxypropyl) methacrylamide (HPMA)‐analog hydrophilic block is obtained. The precursor polymers can be versatile functionalized by simple addition of suitable primary amines during aminolysis as demonstrated using a fluorescent dye. Vesicle formation is proven by cryoTEM and light scattering. High encapsulation efficiencies for hydrophilic cargo like siRNA are achieved using dual centrifugation and safe encapsulation is demonstrated by gel electrophoresis. In vitro studies reveal low cytotoxicity and no protein adsorption‐induced aggregation in human blood serum occurs, making the vesicles interesting candidates as nanosized drug carriers.

  相似文献   


18.
The synthesis of an ambipolar π‐conjugated copolymer consisting of alternating diketopyrrolopyrrole and tetrafluorobenzene via direct arylation polymerization (DAP) is reported. Two different combinations of monomers are investigated under various catalytic conditions for DAP. The target polymer obtained under an optimized catalytic condition shows minimal structural defects, a number‐average molecular weight of 33.2 kDa, and balanced electron and hole mobility of 1 × 10−2 cm2 V−1 S−1 in the organic field‐effect transistors fabricated and tested under ambient conditions.

  相似文献   


19.
A pH‐responsive core cross‐linked star (CCS) polymer containing poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) arms was used as an interfacial stabilizer for emulsions containing toluene (80 v%) and water (20 v%). In the pH range of 12.1‐9.3, ordinary water‐in‐oil emulsions were formed. Intermediate multiple emulsions of oil‐in‐water‐in‐oil and water‐in‐oil‐in‐water were formed at pH 8.6 and 7.5, respectively. Further lowering the pH resulted in the formation of gelled high internal phase emulsions of oil‐in‐water type in the pH range of 6.4‐0.6. The emulsion behavior was correlated with interfacial tension, conductivity and configuration of the CCS polymer at different pH.

  相似文献   


20.
There is a significant cost to mitigate the infection and inflammation associated with the implantable medical devices. The development of effective antibacterial and anti‐inflammatory biomaterials with novel mechanism of action has become an urgent task. In this study, a supramolecular polymer hydrogel is synthesized by the copolymerization of N‐acryloyl glycinamide and 1‐vinyl‐1,2,4‐triazole in the absence of any chemical crosslinker. The hydrogel network is crosslinked through the hydrogen bond interactions between dual amide motifs in the side chain of N‐acryloyl glycinamide. The prepared hydrogels demonstrate excellent mechanical properties—high tensile strength (≈1.2 MPa), large stretchability (≈1300%), and outstanding compressive strength (≈11 MPa) at swelling equilibrium state. A simulation study elaborates the changes of hydrogen bond interactions when 1‐vinyl‐1,2,4‐triazole is introduced into the gel network. It is demonstrated that the introduction of 1‐vinyl‐1,2,4‐triazole endowes the supramolecular hydrogels with self‐repairability, thermoplasticity, and reprocessability over a lower temperature range for 3D printing of different shapes and patterns under simplified thermomelting extrusion condition. In addition, these hydrogels exhibit antimicrobial and anti‐inflammatory activities, and in vitro cytotoxicity assay and histological staining following in vivo implantation confirm the biocompatibility of the hydrogel. These hydrogels with integrated multifunctions hold promising potential as an injectable biomaterial for treating degenerated soft supporting tissues.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号