首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
SiC nanowires with fins have been prepared by chemical vapor deposition in a vertical vacuum furnace by using a powder mixture of milled Si and SiO2 and gaseous CH4 as the raw materials. The products were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). These investigations confirm that the nanowires with fins are cubic β-SiC. The diameter of the fins is about 100–120 nm and the diameter of the inner core stems is about 60–70 nm. The formation process of the β-SiC nanowires with fins is analyzed and discussed briefly.  相似文献   

2.
等离子体增强化学气相沉积法实现硅纳米线掺硼   总被引:3,自引:0,他引:3       下载免费PDF全文
用等离子体增强化学气相沉积(PECVD)方法成功实现硅纳米线的掺B.选用Si片作衬底,硅烷 (SiH4)作硅源,硼烷(B2H6)作掺杂气体, Au作催化剂,生长温度440℃.基于气-液-固(VLS)机制,探讨了掺B硅纳米线可能的生长机制.PECVD法化学成分配比更灵活,更容易实现纳米线掺杂,进一步有望生长硅纳米线pn结,为研制纳米量级器件提供技术基础. 关键词: 硅纳米线 化学气相沉积 纳米器件  相似文献   

3.
ZnO nanowires with different arsenic concentration were grown on Si (1 0 0) substrates by chemical vapor deposition method without using catalyst. Zn/GaAs mixed powders were used as Zn and As source, respectively. Oxygen was used as oxidant. The images of scanning electron microscope show that the arsenic-doped ZnO nanowires with preferred c-axial orientation were obtained, which is in well accordance with the X-ray diffraction analysis. The arsenic related acceptor emission was observed in the photoluminescence spectra at 11 K for all arsenic-doped ZnO samples. This method for the preparation of arsenic-doped ZnO nanowires may open the way to realize the ZnO nanowires based light-emitting diode and laser diode.  相似文献   

4.
Indium was used as a catalyst for the synthesis of silicon nanowires in a plasma enhanced chemical vapor deposition reactor. In order to foster the catalytic activity of indium, the indium droplets had to be exposed to a hydrogen plasma prior to nanowire growth in a silane plasma. The structure of the nanowires was investigated as a function of the growth conditions by electron microscopy and Raman spectroscopy. The nanowires were found to crystallize along the <111>, <112> or <001> growth direction. When growing on the <112> and <111> directions, they revealed a similar crystal quality and the presence of a high density of twins along the {111} planes. The high density and periodicity of these twins lead to the formation of hexagonal domains inside the cubic structure. The corresponding Raman signature was found to be a peak at 495 cm−1, in agreement with previous studies. Finally, electron energy loss spectroscopy indicates an occasional migration of indium during growth.  相似文献   

5.
 利用传统光学加工方法,采用陶瓷磨盘和金刚石微粉对国产化学气相沉积(CVD) SiC进行了粗磨、细磨加工;然后,利用颗粒直径从4 μm到1 μm的金刚石研磨膏逐级进行抛光,发现SiC表面存在纳米级划痕;最后,改用颗粒直径为20 nm氧化铝纳米颗粒的碱性水溶液进行抛光,表面粗糙度达到0.6 nm(RMS),表面纳米级划痕得到很好改善,获得了较高表面质量的超光滑表面。  相似文献   

6.
利用传统光学加工方法,采用陶瓷磨盘和金刚石微粉对国产化学气相沉积(CVD) SiC进行了粗磨、细磨加工;然后,利用颗粒直径从4 μm到1 μm的金刚石研磨膏逐级进行抛光,发现SiC表面存在纳米级划痕;最后,改用颗粒直径为20 nm氧化铝纳米颗粒的碱性水溶液进行抛光,表面粗糙度达到0.6 nm(RMS),表面纳米级划痕得到很好改善,获得了较高表面质量的超光滑表面。  相似文献   

7.
Vertically aligned zinc oxide nanowires (NWs) were synthesized by two different techniques: chemical vapor deposition (CVD) and hydrothermal synthesis. To compare the effects of different growth conditions, both F-doped SnO2 (FTO) coated-glass and silicon wafers were used as substrates. Before NWs growth, all the substrates were covered with a ZnO seed layer film obtained with the same procedure, which acts as nucleation site for the subsequent growth of the nanowires both during CVD and hydrothermal synthesis. We studied the influence of the two synthesis techniques and the growth duration on the final morphology, orientation, and density of the ZnO NWs using electron microscopy and X-ray diffraction, while the NWs optical quality was addressed by UV–Vis spectroscopy. By discussing advantages and disadvantages of both synthesis methods, we finally show that the application purpose often drives the choice of the NWs growth process and the substrate to be used.  相似文献   

8.
Silicon nanowires were synthesized using chemical vapor deposition catalyzed by gold nanoparticles deposited on silicon substrates. Silicon nanowires grew epitaxially in 111 directions on (100)-oriented silicon substrates. For a particular set of process parameters, we observed a critical thickness of the nucleating gold film, below which nanowires could not be grown. We studied the dependence of the Au-Si alloy droplet size and size distribution on the starting gold film thickness and the annealing conditions. Increasing the Cl:Si ratio in the gas phase allowed nanowires to grow on smaller Au-Si alloy droplets. We used a modified heating sequence that deconvoluted the effect of silicon substrate consumption and gas-phase silicon supply on the Au-Si alloy formation and allowed growth of nanowires with diameters less than 20 nm. The modified heating sequence was also used to demonstrate the growth of bridging silicon nanowires with diameters less than 20 nm, which is a significant step in producing electronic devices. PACS 81.07.b; 81.15.Gh  相似文献   

9.
通过化学气相沉积法在不同衬底上制备了大量的氧化硅纳米线.选用衬底为Si片、带有约100nm厚SiO2氧化层Si片和石英片.利用场发射扫描电子显微镜(SEM)和透射电镜(TEM,配备有能谱仪)对样品的表面形貌、结构和成分进行研究.结果表明:这些纳米线都为非晶态,但在不同衬底上生长的纳米线形貌、尺寸和化学成分不同.讨论了各种衬底对不同特征氧化硅纳米线生长的影响. 关键词: 化学气相沉积 纳米线 纳米颗粒  相似文献   

10.
GaN nanowires have been fabricated on Si(1 1 1) substrates by chemical vapor deposition (CVD) method with NiCl2 as catalyst and their compositions, microstructures, morphologies and light emitting properties were characterized by X-ray diffraction (XRD), FT-IR spectrophotometer (FTIR), scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), Raman spectroscopy and photoluminescence (PL). The results demonstrate that the nanowires are single-crystal GaN with hexagonal wurtzite structure and high crystalline quality, having the size of 20-50 nm in diameter and several tens of microns in length with some nano-droplets on their tips, which reveals that the growth mechanism of GaN nanowires agrees with vapor-liquid-solid (VLS) process. Five first-order Raman active phonon bands move to low shift and A1(TO), E1(TO), and E2 (high) bands are overlapped and broaden, which is caused by uncertainty in the phonon wave vector. Five non-first-order active Raman phonons also appear, which is caused by the small dimension and high surface disorder degree. A blue-shift of the band-gap emission occurs due to quantum confinement effect.  相似文献   

11.
Single-crystal SnS nanowires have been successfully synthesized by catalysis-assistant chemical vapor deposition. Applying Au nanoparticles which were applied on the ITO surface as the catalysator, using SnS powder and S powder as precursors and the Ar+H2 mixed atmosphere as the shielding and carrier gas, the SnS nanowires were obtained. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and Raman spectroscopy were employed to characterize the as-synthesized SnS nanostructures. The room-temperature photoluminescence properties of these as-prepared SnS nanowires were presented.  相似文献   

12.
Large-scale, high-density gallium nitride nanowires were successfully synthesized by the direct reaction of gallium and ammonia using gold as initiator. The as-synthesized product was characterized by XRD, SEM, TEM, SAED, and EDS. The results showed that the product is hexagonal wurtzite GaN with high purity. The nanowires have diameters in the range of 60–100 nm and are a few tens of micrometers in length. A remarkable feature is that catalyst particles were observed at the ends of the nanowires, indicating that the growth process can be controlled by the vapor–liquid–solid mechanism. The present results revealed that gold is an effective and advantageous catalyst for the growth of GaN nanowires. PACS 81.05.Ea; 81.10.Bk; 68.65.-k  相似文献   

13.
In this study, the dependence of the deposition rate on processing parameters, such as temperature, and partial pressure is studied by chemical vapor deposition from mixture of methyltrichlorosilane (CH3SiCl3, MTS) and hydrogen. The kinetics investigation is carried out in a tubular, hot-wall reactor coupled to a sensitive magnetic suspension microbalance. The results show that the active energy limited by surface reactions is 188 kJ/mol. In the case, the deposition rate is linear to the partial pressure of MTS and the square of partial pressure of hydrogen. SiCl2 and CH3 are proposed as the effective precursor for SiC. A reaction model was proposed concluding gas phase reactions and surface reactions. The theoretical relation between deposition rate and partial pressures of MTS and H2 was in a good accordance with experimental results.  相似文献   

14.
利用化学气相沉积法(CVD),气-液-固(VLS)生长法则在表面溅有金属Au催化剂层的1 cm×1 cm的Si片上制备三元Zn2GeO4纳米线。X射线衍射仪(XRD)测试结果表明,锌源与锗源质量比为8:1时可成功制备出Zn2GeO4纳米结构;扫描电子显微镜(SEM)测试结果表明,Zn2GeO4纳米线直径为100 nm,长度为10~11 μm;光致发光(PL)测试结果表明,Zn2GeO4纳米线在432和480 nm处具有两个发光峰,最后对其生长机理进行了分析。  相似文献   

15.
Growth of epitaxial graphene (EG) on silicon carbide (SiC) is regarded as one of the most effective routes to high-quality graphene towards practical applicability. We try to build up a model to illuminate the nucleation process of EG on SiC by thermal decomposition. The model is derived from some experimental results and discloses that surface diffusion plays an important role in the nucleation. For the chemical vapor deposition process used, the organic gas as carbon precursor enables carbon deposition quickly for supporting the growth of high-quality graphene via vapor transformation, so that the nucleated and final graphene becomes almost stress-free and mimics the free-standing graphene. Our findings have a potential in preparing high-quality graphene by controlling the nucleation conditions.  相似文献   

16.
This study explores the nucleation and morphological evolution of silicon nanowires (Si-NWs) on Si (0 0 1) and (1 1 1) substrates synthesized using nanoscale Au–Si island-catalyzed rapid thermal chemical vapor deposition. The Au–Si islands are formed by Au thin film (1.2–3.0 nm) deposition at room temperature followed by annealing at 700 °C, which are employed as a liquid-droplet catalysis during the growth of the Si-NWs. The Si-NWs are grown by exposing the substrates with Au–Si islands to a mixture of gasses SiH4 and H2. The growth temperatures and the pressures are 500–600 °C and 0.1–1.0 Torr, respectively. We found a critical thickness of the Au film for Si-NWs nucleation at a given growth condition. Also, we observed that the dimensional evolution of the NWs significantly depends on the growth pressure and temperature. The resulting NWs are 30–100 nm in diameter and 0.4–12.0 μm in length. For Si (0 0 1) substrates 80% of the NWs are aligned along the 1 1 1 direction which are 30° and 60° with respect to the substrate surface while for Si (1 1 1) most of the NWs are aligned vertically along the 1 1 1 direction. In particular, we observed that there appears to be two types of NWs; one with a straight and another with a tapered shape. The morphological and dimensional evolution of the Si-NWs is significantly related to atomic diffusion kinetics and energetics in the vapor–liquid–solid processes.  相似文献   

17.
We have fabricated sharp-tipped Te nanowires on a NaNO2 nanoparticles substrate by vapor deposition method. These nanowires are parallel or perpendicular to c-axis of hexagonal Te depending on the source temperature. We think the sharp-tip can efficiently reduce the energy of adsorbed atoms, leading to favorable growth along its direction.  相似文献   

18.
Planar silicon carbide (SiC) waveguides are proposed for fabrication on a silicon substrate with an oxide isolation layer. Using post deposition annealing it is possible to achieve low polarisation-dependent loss (PDL) within optical SiC waveguides fabricated using a low temperature deposition technique. The proposed waveguides are optically characterised and successfully used in power splitters and vibration sensors. Results before and after annealing cycles for those devices are discussed. The interesting optical characteristics of SiC waveguides as well as the first passive components presented open the way for photonic sensing in harsh environment where SiC is a very promising material.  相似文献   

19.
In this paper, we describe the growth and potential application of metal nanocrystal assemblies on metal-catalyzed, CVD-grown silicon nanowires (SiNWs). The nanowires are decorated by chemical assembly of closely spaced (1–5 nm) Ag (30–100 nm diameter) and Au (5–25 nm diameter) nanocrystals formed from solutions of AgNO3 and NaAuCl4·2H2O, respectively. The formation and growth of metal nanocrystals is believed to involve the galvanic reduction of metal ions from solution and the subsequent oxidation of available Si-hydride sites on the surfaces of the nanowires. A native oxide layer suppresses formation of metal nanocrystals; adding HF to the ionic solutions significantly increases the density of nanocrystals on the surfaces of the nanowires. The nanocrystals coating the nanowires were characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, and X-ray diffraction. Ag nanocrystals on the nanowires afford sensitive detection of Rhodamine 6G (R6G) molecules in the 100 picomolar–micromolar range by surface enhanced Raman spectroscopy. In addition, Au nanocrystals formed on selected surfaces of a substrate of arbitrary shape can serve as effective nuclei for localized nanowire growth. PACS 81.07.b; 81.15.Gh  相似文献   

20.
Single crystalline rutile titanium oxide nanowires have been synthesized in bulk yield based on commercial metal titanium by a facile water-assisted chemical vapor deposition method. The morphology, crystallinity, and phase structure of the nanowires have been characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD). This growth strategy is applicable for commercial metal titanium substrate with different spatial dimensions, such as powder, network mesh, and flat foil. The as-synthesized nanowires are found to be mainly composed of single crystalline rutile TiO2 nanowires in spiral shape with a small amount of hexagonal Ti2O nanowires with zigzag form. A growth mechanism has been proposed to explain the novel spiral and zigzag types of titanium oxide nanowires under moderate temperature (850 °C). This method promises an alternative way for industrialization of titanium oxide nanowires which may serve as a good candidate for various industrial applications such as optoelectronic, electronic, and electrochemical nanodevices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号