首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multivalent binding is a key for many critical biological processes and unique recognition and specificity in binding enables many of different glycans and proteins to work in a great harmony within the human body. In this study, the binding kinetics of synthetic glycopolypeptides to the dendritic cell lectin DC‐SIGN and their inhibition potential for DC‐SIGN interactions with the gp120 envelope glycoprotein of HIV‐1 (gp120) are investigated.

  相似文献   


2.
Enzymatic catalysis and control over macromolecular architectures from reversible addition‐fragmentation chain transfer polymerization (RAFT) are combined to give a new method of making polymers. Horseradish peroxidase (HRP) is used to catalytically generate radicals using hydrogen peroxide and acetylacetone as a mediator. RAFT is used to control the polymer structure. HRP catalyzed RAFT polymerization gives acrylate and acrylamide polymers with relatively narrow molecular weight distributions. The polymerization is rapid, typically exceeding 90% monomer conversion in 30 min. Complex macromolecular architectures including a block copolymer and a protein‐polymer conjugate are synthesized using HRP to catalytically initiate RAFT polymerization.

  相似文献   


3.
In order to improve the stability of polymeric vesicles, supramolecular vesicles are developed via self‐assembly of the inclusion of γ‐cyclodextrin (γ‐CD) and 1‐pyrenemethyl palmitate (Py‐pal). The inclusion has one hydrophilic head and double hydrophobic tails, which looks like the phospholipid. From the transmission electron microscopy (TEM) image, it can be observed that the average diameter of supramolecular vesicles is approximately 55 nm and there is a huge cavity in supramolecular vesicles. Due to the photo‐breakable ester of Py‐pal, supramolecular vesicles are broken under UV irradiation. Supramolecular vesicles are used as UV‐responsive drug carriers to release the hydrophilic drug such as doxorubicin hydrochloride (DOX•HCl).

  相似文献   


4.
Halo‐ester‐functionalized poly(ethylene glycol)s (PEGs) are successfully prepared by the transesterification of alkyl halo‐esters with PEGs using Candida antarctica lipase B (CALB) as a biocatalyst under the solventless conditions. Transesterifications of chlorine, bromine, and iodine esters with tetraethylene glycol monobenzyl ether (BzTEG) are quantitative in less than 2.5 h. The transesterification of halo‐esters with PEGs are complete in 4 h. 1H and 13C NMR spectroscopy with MALDI‐ToF and ESI mass spectrometry confirm the structure and purity of the products. This method provides a convenient and “green” process to effectively produce halo‐ester PEGs.

  相似文献   


5.
Electrohydrodynamic cojetting has been employed to synthesize compartmentalized microfibers from thermally responsive hydrogels. The synthesis of the hydrogels as well as their transformation into compartmentalized microcylinders is discussed. After programmable shape‐shifting, snail‐like particles are obtained that undergo functional and structural reconfiguration in response to a change in temperature.

  相似文献   


6.
A droplet microfluidics strategy to rapidly synthesize, process, and screen up to hundreds of thousands of compositionally distinct synthetic hydrogels is presented. By programming the flow rates of multiple microfluidic inlet channels supplying individual hydrogel building blocks, microgel compositions and properties are systematically modulated. The use of fluorescent labels as proxies for the physical and chemical properties of the microgel permits the rapid screening and discovery of specific formulations through fluorescence microscopy or flow cytometry. This concept should accelerate the discovery of new hydrogel formulations for various novel applications.

  相似文献   


7.
The present review focuses on the recent progress made in thin film orientation of semi‐conducting polymers with particular emphasis on methods using epitaxy and shear forces. The main results reported in this review deal with regioregular poly(3‐alkylthiophene)s and poly(dialkylfluorenes). Correlations existing between processing conditions, macromolecular parameters and the resulting structures formed in thin films are underlined. It is shown that epitaxial orientation of semi‐conducting polymers can generate a large palette of semi‐crystalline and nanostructured morphologies by a subtle choice of the orienting substrates and growth conditions.

  相似文献   


8.
The different mechanisms contributing to adhesion between two polymer surfaces are summarized and described in individual examples, which represent either seminal works in the field of adhesion science or novel approaches to achieve polymer–polymer adhesion. A further objective of this article is the development of new methodologies to achieve strong adhesion between low surface energy polymers.

  相似文献   


9.
Diselenide‐containing polymers are facilely synthesized from polymers prepared by atom transfer radical polymerization (ATRP). Benefiting from the ATRP technology, this protocol provides a flexible route for controlling the polymer structure, which allows for a great variety of architectures of selenium‐containing polymer materials for applications in various fields. The oxidative and reductive responsive behavior of the obtained diselenide‐containing polymers is also investigated.

  相似文献   


10.
Hierarchical self‐assembly of transient composite hydrogels is demonstrated through a two‐step, orthogonal strategy using nanoparticle tectons interconnected through metal–ligand coordination complexes. The resulting materials are highly tunable with moduli and viscosities spanning many orders of magnitude, and show promising self‐healing properties, while maintaining complete optical transparency.

  相似文献   


11.
Atom transfer radical polymerization (ATRP) is a versatile and robust tool to synthesize a wide spectrum of monomers with various designable structures. However, it usually needs large amounts of transition metal as the catalyst to mediate the equilibrium between the dormant and propagating species. Unfortunately, the catalyst residue may contaminate or color the resultant polymers, which limits its application, especially in biomedical and electronic materials. How to efficiently and economically remove or reduce the catalyst residue from its products is a challenging and encouraging task. Herein, recent advances in catalyst separation and recycling are highlighted with a focus on (1) highly active ppm level transition metal or metal free catalyzed ATRP; (2) post‐purification method; (3) various soluble, insoluble, immobilized/soluble, and reversible supported catalyst systems; and (4) liquid‐liquid biphasic catalyzed systems, especially thermo‐regulated catalysis systems.

  相似文献   


12.
In the last decades, metallopolymers have received great attention due to their various applications in the fields of materials and chemistry. In this article, a neutral 18‐electron exo‐substituted η4‐cyclopentadiene CpCo(I) unit‐containing polymer is prepared in a controlled/“living” fashion by combining facile click chemistry and ring‐opening meta­thesis polymerization (ROMP). This Co(I)‐containing polymer is further used as a heterogeneous macromolecular catalyst for atom transfer radical polymerization (ATRP) of methyl methacrylate and styrene.

  相似文献   


13.
Cross‐linked azobenzene liquid‐crystalline polymer films with a poly(oxyethylene) backbone are synthesized by photoinitiated cationic copolymerization. Azobenzene moieties in the film surface toward the light source are simultaneously photoaligned during photopolymerization with unpolarized 436 nm light and thus form a splayed alignment in the whole film. The prepared films show reversible photoinduced bending behavior with opposite bending directions when different surfaces of one film face to ultraviolet light irradiation.

  相似文献   


14.
The synthesis of tetracene‐ and pentacene‐annulated norbornadienes, formed through the Diels–Alder reaction of a dehydroacene with cyclopentadiene is reported. Ring‐opening metathesis polymerization (ROMP) leads to polymers that are investigated with respect to their physical, optical, and electronic properties by gel permeation chromatography (GPC), UV–vis spectroscopy, and cyclic voltammetry. The pentacene‐containing polymer P1 is successfully integrated into an organic field‐effect transistor (OFET); the tetracene‐containing polymer P2 is integrated into an organic light‐emitting diode (OLED).

  相似文献   


15.
Nine different perylene derivatives are prepared and their ability to initiate, when combined with an iodonium salt (and optionally N‐vinylcarbazole), a ring‐opening cationic photopolymerization of epoxides under very soft halogen lamp irradiation is investigated. One of them is particularly efficient under a red laser diode exposure at 635 nm and belongs now to the very few systems available at this wavelength. The photochemical mechanisms are studied by steady‐state photolysis, electron spin resonance spin trapping, fluorescence, cyclic voltammetry, and laser flash photolysis techniques.

  相似文献   


16.
Development of novel photoluminescent hydrogels with toughness, biocompatibility, and antibiosis is important for the applications in biomedical field. Herein, novel tough photoluminescent lanthanide (Ln)‐alginate/poly(vinyl alcohol) (PVA) hydrogels with the properties of biocompatibility and antibiosis have been facilely synthesized by introducing hydrogen bonds and coordination bonds into the interpenetrating networks of Na‐alginate and PVA, via approaches of frozen‐thawing and ion‐exchanging. The resultant hydrogels exhibit high mechanical strength (0.6 MPa tensile strength, 5.0 tensile strain, 6.0 MPa compressive strength, and 900 kJ m−3 energy dissipation under 400% stretch), good photoluminescence as well as biocompatibility and antibacterial activity. The design strategy provides a new avenue for the fabrication of multifunctional photoluminescent hydrogels based on biocompatible polymers.

  相似文献   


17.
A double‐layer hollow fiber is fabricated where an isoporous surface of polystyrene‐block‐poly(4‐vinylpyridine) is fixed on a support layer by co‐extrusion. Due to the sulfonation of the support layer material, delamination of the two layers is suppressed without increasing the number of subsequent processing steps for isoporous composite membrane formation. Electron microscope‐energy‐dispersive X‐ray spectroscopy images unveil the existence of a high sulfur concentration in the interfacial region by which in‐process H‐bond formation between the layers is evidenced. For the very first time, our study reports a facile method to fabricate a sturdy isoporous double‐layer hollow fiber.

  相似文献   


18.
Janus particles with anisotropic biofunctionalities are perfect models to mimic anisotropic architectures and directional interactions that occur in nature. It is therefore highly desirable to develop reliable and efficient methods to synthesize biofunctional Janus particles. Herein, a facile method combining seeded‐emulsion polymerization and thiol‐click chemistry has been developed to synthesize Janus particles with glucose moieties on one side. These biofunctional Janus particles show region‐selective binding of protein, which represents a big step toward biomimicry, and demonstrates the potential of the bioJanus particles for targeted drug delivery and binding.

  相似文献   


19.
Conjugated pillar[5]arene‐diketopyrrolopyrrole copolymer ( P1 ) is synthesized by the copolymerization of a difunctionalized pillar[5]arene and a diketopyrrolopyrrole‐based monomer, which shows large extinction coefficients (1.1 × 104m –1 cm–1) at 519 nm and strong emission at 587 nm. P1 exhibits very strong host–guest binding affinity towards adiponitrile but low binding affinity towards 1,4‐dihalobutane and 1,4‐bis(imidazol‐1‐yl)butane. Such an enhanced selectivity is first found in the polypseudorotaxane between pillararene and neutral guests in organic solution and is successfully used for the recognition and adsorption of adiponitrile by the formation of a P1 ‐adiponitrile polypseudorotaxane.

  相似文献   


20.
Novel macrocyclic amine‐linked oligocarbazole hollow microspheres are synthesized via a one‐step oxidative method in aqueous solution. Upon altering the oxidants and acidic media, the average diameters of the obtained hollow microspheres are tunable from 0.23 to 2.0 μm. With attractive amine and carbazole functionalities, exposed surface area, thermostability, and photoluminescent properties, the amine‐linked oligocarbazole hollow microspheres are directly assembled to yield heavy metal sorbents with excellent selectivity and recyclability, shown to efficiently remove lead from contaminated water.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号