首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A challenging synthetic modification of PEPPSI‐type palladium pre‐catalysts consisting of a stepwise incorporation of one and two amino groups onto the NHC skeleton was seen to exert a sequential enhancement of the electronic donor properties. This appears to be positively correlated with the catalytic performances of the corresponding complexes in the Buchwald–Hartwig amination. This is illustrated, for example, by the quantitative amination of 4‐chloroanisole by morpholine within 2 h at 25 °C with a 2 mol % catalyst/substrate ratio or by a significant reduction of catalytic loading (down to 0.005 mol %) for the coupling of aryl chlorides with anilines (max TON: 19 600).  相似文献   

2.
In this work the synthesis of new asymmetric diamine ligands from camphoric acid is described. The new diamines can be directly prepared in a regioselective arylation of the less hindered primary amine group of (+)‐cis‐1,2,2‐trimethylcyclopentane‐1,3‐diamine via a Buchwald–Hartwig amination in high yields. The resulting diamines incorporate a secondary and primary amine group and were successfully applied as ligands in a copper‐catalyzed Henry reaction. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Eight heteroleptic palladium complexes containing both N‐heterocyclic carbenes and NH‐heterocycle azoles (pyrazole and indazole) were synthesized and characterized, and their structures were unambiguously confirmed using single‐crystal X‐ray diffraction. Further investigation of the complexes as catalysts in the Suzuki–Miyaura reaction and Buchwald–Hartwig amination revealed good reactivities for aryl chlorides.  相似文献   

4.
A combination of a palladium–NHC catalyst and potassium hexamethyldisilazide enables the amination of aryl sulfides with anilines to afford a wide variety of diarylamines. The reaction conditions are versatile enough for the reaction of even bulky ortho‐substituted aryl sulfides. This amination can be applied to the modular synthesis of N‐aryl carbazoles from the corresponding ortho‐bromothioanisoles. As aryl sulfoxides undergo extended Pummerer reactions to afford ortho‐substituted aryl sulfides, the Pummerer products are thus useful substrates for the amination to culminate in efficient syntheses of a 2‐anilinobenzothiophene and an indole as proof‐of‐principle of the utility of the extended Pummerer reaction/amination cascade.  相似文献   

5.
Nickel‐catalyzed Buchwald–Hartwig amination of pyrimidin‐2‐yl tosylates with indole and benzimidazole was achieved using Ni(dppp)Cl2 as catalyst, yielding a variety of novel C2‐substituted pyrimidine derivatives in good yields. This reaction proved to be tolerant of various pyrimidin‐2‐yl tosylates bearing either electron‐donating or electron‐withdrawing groups as well as nucleophiles including indole, benzimidazole and 1,2,4‐triazole. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
A comparative study between the most used methodologies for the preparation of piperidinyl pyridines (Buchwald–Hartwig reaction, Ullmann reaction and nucleophilic aromatic substitution (SNAr)) by microwave‐assisted piperidination of halopyridines is reported. Our results suggest that the Ullmann reaction is most effective for less reactive halopyridines, while uncatalysed SNAr is sufficient for more reactive ones. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
We provide an overview on the state‐of‐the‐art in transition‐metal complexes formed with water‐soluble NHC ligands. Paths to introducing water solubility by ligand design are elucidated and some general properties of water‐soluble NHC complexes are highlighted. The enhanced hydrophilicity of water‐soluble catalysts offers advantages in applications. While studies based on C? C coupling reactions still dominate the field, recent reports show water‐soluble NHC complexes can be applied in metathesis and hydrogenation reactions and turn out to be among the best performing catalysts known. Nevertheless, wide areas of this young field remain to be investigated, offering great potential for future research.  相似文献   

8.
A series of new, easily activated NHC–PdII precatalysts featuring a trans‐oriented morpholine ligand were prepared and evaluated for activity in carbon‐sulfur cross‐coupling chemistry. [(IPent)PdCl2(morpholine)] (IPent=1,3‐bis(2,6‐di(3‐pentyl)phenyl)imidazol‐2‐ylidene) was identified as the most active precatalyst and was shown to effectively couple a wide variety of deactivated aryl halides with both aryl and alkyl thiols at or near ambient temperature, without the need for additives, external activators, or pre‐activation steps. Mechanistic studies revealed that, in contrast to other common NHC–PdII precatalysts, these complexes are rapidly reduced to the active NHC–Pd0 species at ambient temperature in the presence of KOtBu, thus avoiding the formation of deleterious off‐cycle PdII–thiolate resting states.  相似文献   

9.
In this work, graphene oxide was functionalized with chitosan (GO‐Chit) followed by a simple approach for immobilization of palladium nanoparticles onto a chitosan grafted graphene oxide surface. The Pd‐nanocomposite (GO‐Chit‐Pd) was characterized using Transmission Electron Microscopy (TEM), Fourier transforms infrared spectroscopy (FT‐IR), and X‐ray diffraction (XRD) measurements. The catalytic activity of the prepared heterogeneous graphene oxide functionalized chitosan‐palladium (GO‐Chit‐Pd) was investigated in term of C‐N coupling reaction (Buchwald‐Hartwig amination reaction of aryl halides) yielding products of N‐arylamines. The easy purification, convenient operation, and environmental friendliness, combined with a high yield, render this method viable for use in both laboratory research and larger industrial scales. Studying the reusability of the catalyst in this work showed that it could be reused for five times without obvious loss in catalytic activity.  相似文献   

10.
Over the past two decades, considerable attention has been given to the development of new ligands for the palladium‐catalyzed arylation of amines and related NH‐containing substrates (i.e., Buchwald–Hartwig amination). The generation of structurally diverse ligands, by research groups in both academia and industry, has facilitated the accommodation of sterically and electronically divergent substrates including ammonia, hydrazine, amines, amides, and NH heterocycles. Despite these achievements, problems with catalyst generality persist and access to multiple ligands is necessary to accommodate all of these NH‐containing substrates. In our quest to address this significant limitation we identified the BippyPhos/[Pd(cinnamyl)Cl]2 catalyst system as being capable of catalyzing the amination of a variety of functionalized (hetero)aryl chlorides, as well as bromides and tosylates, at moderate to low catalyst loadings. The successful transformations described herein include primary and secondary amines, NH heterocycles, amides, ammonia and hydrazine, thus demonstrating the largest scope in the NH‐containing coupling partner reported for a single Pd/ligand catalyst system. We also established BippyPhos/[Pd(cinnamyl)Cl]2 as exhibiting the broadest demonstrated substrate scope for metal‐catalyzed cross‐coupling of (hetero)aryl chlorides with NH indoles. Furthermore, the remarkable ability of BippyPhos/[Pd(cinnamyl)Cl]2 to catalyze both the selective monoarylation of ammonia and the N‐arylation of indoles was exploited in the development of a new one‐pot, two‐step synthesis of N‐aryl heterocycles from ammonia, ortho‐alkynylhalo(hetero)arenes and (hetero) aryl halides through tandem N‐arylation/hydroamination reactions. Although the scope in the NH‐containing coupling partner is broad, BippyPhos/[Pd(cinnamyl)Cl]2 also displays a marked selectivity profile that was exploited in the chemoselective monoarylation of substrates featuring two chemically distinct NH‐containing moieties.  相似文献   

11.
The synthesis of a series of [(IPr)Pd(R‐acac)Cl] precatalysts (acac=acetylacetonato; IPr=1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene), where the acac ligand on palladium has been systematically modified through terminal substitution, is reported. The following substituted acac ligands are employed in this study: dibenzoylmethanato (dbm), benzoylacetonato (bac), tetramethylheptanedionato (tmhd), and hexafluoroacetylacetonato (hfac). Full spectroscopic characterization of the new complexes is provided along with X‐ray studies for three of these. Investigation of their catalytic activity in cross‐coupling is also presented through a comparative study in an aryl amination reaction. The catalytic results show a strong correlation between the increased steric bulk of the acac substituents and an increased activation rate of the precatalyst, going from the acac to the tmhd ligand. This observation, along with the inertness of the hfac compound, seems to support our previous proposal for the activation mechanism of these complexes under cross‐coupling conditions.  相似文献   

12.
An efficient, simple way to synthesize aminopyridine derivatives is presented, based on Buchwald–Hartwig aminations. Using 1 mol% N‐heterocyclic carbene adduct of cyclopalladated ferrocenylimine in the presence of 1.5 equiv. tBuOK as base in dioxane at 110°C offered moderate to excellent yields in the reaction of chloropyridines with primary and secondary amines, including sterically hindered amines and alkyl amines.  相似文献   

13.
Palladium complexes incorporating chiral N‐heterocyclic carbene (NHC) ligands catalyze the asymmetric intramolecular α‐arylation of amides producing 3,3‐disubstituted oxindoles. Comprehensive DFT studies have been performed to gain insight into the mechanism of this transformation. Oxidative addition is shown to be rate‐determining and reductive elimination to be enantioselectivity‐determining. The synthesis of seven new NHC ligands is detailed and their performance is compared. One of them, L8 , containing a tBu and a 1‐naphthyl group at the stereogenic centre, proved superior and was very efficient in the asymmetric synthesis of fifteen new spiro‐oxindoles and three azaspiro‐oxindoles often in high yields (up to 99 %) and enantioselectivities (up to 97 % ee; ee=enantiomeric excess). Three palladacycle intermediates resulting from the oxidative addition of [Pd(NHC)] into the aryl halide bond were isolated and structurally characterized (X‐ray). Using these intermediates as catalysts showed alkene additives to play an important role in increasing turnover number and frequency.  相似文献   

14.
Triarylmethanes, which are valuable structures in materials, sensing and pharmaceuticals, have been synthesized starting from methyl phenyl sulfone as an inexpensive and readily available template. The three aryl groups were installed through two sequential palladium‐catalyzed C? H arylation reactions, followed by an arylative desulfonation. This method provides a new synthetic approach to multisubstituted triarylmethanes using readily available haloarenes and aryl boronic acids, and is also valuable for the preparation of unexplored triarylmethane‐based materials and pharmaceuticals.  相似文献   

15.
Our work surveyed experimental and theoretical investigations to construct highly emissive D –π–A (D=donor, A=acceptor) fluorenes. The synthetic routes were optimised to be concise and gram‐scalable. The molecular design was first rationalised by varying the electron‐withdrawing group from an aldehyde, ketotriazole or succinyl to methylenemalonitrile or benzothiadiazole. The electron‐donating group was next varied from aliphatic or aromatic amines to saturated cyclic amines ranging from aziridine to azepane. Spectroscopic studies correlated with TD‐DFT calculations provided the optimised structures. The selected push–pull dyes exhibited visible absorptions, significant brightness, important solvatofluorochromism, mega‐Stokes shifts (>250 nm) and dramatic shifts in emission to the near‐infrared. The current library includes the comprehensive characterization of 16 prospective dyes for fluorescence applications. Among them, several fluorene derivatives bearing different conjugation anchors were tested for coupling and demonstrated to preserve the photophysical responses once further bound.  相似文献   

16.
The synthesis, characterization and in situ catalytic performance of new unsymmetric N,N′‐disubstituted imidazolium‐based dicationic salts in Mizoroki–Heck coupling of acrylates with aryl bromides under aerobic conditions are described. A series of flexible dicationic salts with varying steric and electronic properties were synthesized in good to excellent yields. All the salts were well characterized using spectroscopic techniques. X‐ray diffraction analysis of two salts with the same dicationic backbone and different counter anions shows that the ligand adopts two different conformations which are influenced by the nature of the anion. Thus, the ligand is capable of changing its conformation according to the change in environment due to its flexible nature. All the synthesized imidazolium salts were found to be active in in situ palladium‐catalysed Mizoroki–Heck coupling under aerobic conditions. Amongst the salts, the hydroxyl‐functionalized imidazolium salt, incorporating the features of both bidentate chelating O,O ligand and carbene, shows the maximum catalytic activity. A variety of aryl and heteroaryl methyl and ethyl cinnamates were synthesized using these imidazolium salts as preligands. In addition, NMR studies confirm in situ generation of normal N‐heterocyclic carbenes from the C‐2 position of imidazol‐2‐ylidene ring. The mercury poisoning test was also performed to ascertain the nature of catalytically active palladium species. Aerobic conditions, low catalytic loading (0.5 mol%), shorter reaction times, broad functional group tolerance and good to excellent isolated yields are some of the significant features of the novel catalytic systems described here. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Imidazolium salts bearing triazole groups are synthesized via a copper catalyzed click reaction, and the silver, palladium, and platinum complexes of their N‐heterocyclic carbenes are studied. [Ag4(L1)4](PF6)4, [Pd(L1)Cl](PF6), [Pt(L1)Cl](PF6) (L1=3‐((1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)methyl)‐1‐(pyrimidin‐2‐yl)‐1H‐imidazolylidene), [Pd2(L2)2Cl2](PF6)2, and [Pd(L2)2](PF6)2 (L2=1‐butyl‐3‐((1‐(pyridin‐2‐yl)‐1H‐1,2,3‐triazol‐4‐yl)methyl)imidazolylidene) have been synthesized and fully characterized by NMR, elemental analysis, and X‐ray crystallography. The silver complex [Ag4(L1)4](PF6)4 consists of a Ag4 zigzag chain. The complexes [Pd(L1)Cl](PF6) and [Pt(L1)Cl](PF6), containing a nonsymmetrical NCN ′ pincer ligand, are square planar with a chloride trans to the carbene donor. [Pd2(L2)2Cl2](PF6)2 consists of two palladium centers with CN2Cl coordination mode, whereas the palladium in [Pd(L2)2](PF6)2 is surrounded by two carbene and two triazole groups with two uncoordinated pyridines. The palladium compounds are highly active for Suzuki–Miyaura cross coupling reactions of aryl bromides and 1,1‐dibromo‐1‐alkenes in neat water under an air atmosphere.  相似文献   

18.
19.
The preparation of imidazolium and benzimidazolium salts with hydroxyl or carboxylate functions has been achieved using straightforward synthetic pathways. These salts in combination with palladium(II) acetate give active catalytic systems for Suzuki reaction. A comparative study has been performed, which has revealed that both the heterocycle and the functional group are important for the catalytic activity and stability of the catalyst. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号