首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A heterotritopic copillar[5]arene monomer by introducing effective neutral guest moieties (methylene chains end‐capped with cyano and triazole groups) to a pillar[5]arene macrocycle is prepared. This well‐designed AB2‐type copillar[5]arene contains strong host–guest recognition motifs that are connected with relatively flexible and long linkers, thus efficiently assembles to form supramole­cular hyperbranched polymer (SHP) in chloroform solution, which is characterized by various techniques including 1H NMR, DOSY, viscosity, DLS, and TEM. Particularly, this supramolecular polymer can be effectively depolymerized by adding a competitive butanedinitrile guest.

  相似文献   


2.
The synthesis of an ambipolar π‐conjugated copolymer consisting of alternating diketopyrrolopyrrole and tetrafluorobenzene via direct arylation polymerization (DAP) is reported. Two different combinations of monomers are investigated under various catalytic conditions for DAP. The target polymer obtained under an optimized catalytic condition shows minimal structural defects, a number‐average molecular weight of 33.2 kDa, and balanced electron and hole mobility of 1 × 10−2 cm2 V−1 S−1 in the organic field‐effect transistors fabricated and tested under ambient conditions.

  相似文献   


3.
Hierarchical self‐assembly of transient composite hydrogels is demonstrated through a two‐step, orthogonal strategy using nanoparticle tectons interconnected through metal–ligand coordination complexes. The resulting materials are highly tunable with moduli and viscosities spanning many orders of magnitude, and show promising self‐healing properties, while maintaining complete optical transparency.

  相似文献   


4.
Herein, for rate‐tunable controlled release, the authors report a new facile method to prepare multiresponsive amphiphilic supramolecular diblock copolymers via the cooperative complexation between a water‐soluble pillar[10]arene and paraquat‐containing polymers in water. This supramolecular diblock copolymer can self‐assemble into multiresponsive polymeric micelles at room temperature in water. The resultant micelles can be further used in the controlled release of small molecules with tunable release rates depending on the type of single stimulus and the combination of various stimuli.

  相似文献   


5.
A hypercrosslinked conjugated microporous polymer (HCMP‐1) with a robustly efficient absorption and highly specific sensitivity to mercury ions (Hg2+) is synthesized in a one‐step Friedel–Crafts alkylation of cost‐effective 2,4,6‐trichloro‐1,3,5‐triazine and dibenzofuran in 1,2‐dichloroethane. HCMP‐1 has a moderate Brunauer–Emmett–Teller specific surface (432 m2 g−1), but it displays a high adsorption affinity (604 mg g−1) and excellent trace efficiency for Hg2+. The π–π* electronic transition among the aromatic heterocyclic rings endows HCMP‐1 a strong fluorescent property and the fluorescence is obviously weakened after Hg2+ uptake, which makes the hypercrosslinked conjugated microporous polymer a promising fluorescent probe for Hg2+ detection, owning a super‐high sensitivity (detection limit 5 × 10−8 mol L−1).

  相似文献   


6.
A new method for fabricating hydrogels with intricate control over hierarchical 3D porosity using microfiber porogens is presented. Melt electrospinning writing of poly(ε‐caprolactone) is used to create the sacrificial template leading to hierarchical structuring consisting of pores inside the denser poly(2‐oxazoline) hydrogel mesh. This versatile approach provides new opportunities to create well‐defined multilevel control over interconnected pores with diameters in the lower micrometer range inside hydrogels with potential applications as cell scaffolds with tunable diffusion and transport of, e.g., nutrients, growth factors or therapeutics.

  相似文献   


7.
A linear supramolecular polymer based on the self‐assembly of an easily available copillar[5]arene monomer is efficiently prepared, which is evidenced by the NMR spectroscopy, viscosity measurement, and DOSY experiment. The single‐crystal X‐ray analysis reveals that the polymerization of the AB‐type monomer is driven by the quadruple CH•••π interactions and one CH•••O interaction.

  相似文献   


8.
Based on a water‐in‐oil‐in‐water emulsion system, porous and hollow polydimethylsiloxane (PDMS) beads containing cells using a simple fluidic device with three flow channels are fabricated. Poly(ethylene glycol) (PEG) in the PDMS oil phase is served as a porogen for pore development. The feasibility of the porous PDMS beads prepared with different PEG concentrations (10, 20, and 30 wt%) for cell encapsulation in terms of pore size, protein diffusion, and cell proliferation inside the PDMS beads is evaluated. The PDMS beads prepared with PEG 30 wt% are exhibited a highly porous structure and facilitated fast diffusion of protein from the core domain to the outer phase, eventually leading to enhanced cell proliferation. The results clearly indicate that hollow PDMS beads with a porous structure could provide a favorable microenvironment for cell survival due to the large porous structure.

  相似文献   


9.
Polymers with pendant phenoxyl radicals are synthesized and the electrochemical properties are investigated in detail. The monomers are polymerized using ring‐opening metathesis polymerization (ROMP) or free‐radical polymerization methods. The monomers and polymers, respectively, are oxidized to the radical either before or after the polymerization. These phenoxyl radicals containing polymers reveal a reversible redox behavior at a potential of −0.6 V (vs Ag/AgCl). Such materials can be used as anode‐active material in organic radical batteries (ORBs).

  相似文献   


10.
A thermally stable 2D array of spheres and their morphology control become important for the fabrication of novel nanostructures. Here, a simple method is presented for fabrication of large‐area and well‐ordered arrays of carbonized polystyrene (PS) hollow spheres with a controlled (close‐packed or non‐close‐packed hexagonal) morphology, prepared by combining the self‐assembly of PS‐grafted silica nanoparticles, etching, electron irradiation, and subsequent thermal annealing. Fine control in the 2D or 3D nanostructure of carbon materials can open up new opportunities for high‐performance nanoscale applications that require an efficient fabrication method for preparation of the porous carbon array.

  相似文献   


11.
A series of fluorene‐based conjugated polymers containing the aggregation‐induced emissive (AIE)‐active tetraphenylethene and dicarboxylate pseudocrown as a receptor exhibits a unique dual‐mode sensing ability for selective detection of lead ion in water. Fluorescence turn‐off and turn‐on detections are realized in 80%–90% and 20% water in tetrahydrofuran (THF), respectively, for lead ion with a concentration as low as 10−8 m .

  相似文献   


12.
The first polymer bearing exTTF units intended for the use in electrical charge storage is presented. The polymer undergoes a redox reaction involving two electrons at −0.20 V vs Fc/Fc+ and is applied as active cathode material in a Li‐organic battery. The received coin cells feature a theoretical capacity of 132 mAh g−1, a cell potential of 3.5 V, and a lifetime exceeding more than 250 cycles.

  相似文献   


13.
The functionalization of zinc oxide (ZnO) nanoparticles by poly(3‐hexylthiophene) (P3HT) brush is completed by the combination of a mussel inspired biomimetic anchoring group and Huisgen cyclo‐addition “click chemistry.” Herein, the direct coupling of an azide modified catechol derivative with an alkyne end‐functionalized P3HT is described. This macromolecular binding agent is used to access core@corona ZnO@P3HT with a stable and homogeneous conjugated organic corona. Preliminary photoluminescence measurement proves an efficient electron transfer from the donor P3HT to the acceptor ZnO nanoparticles upon grafting, thus demonstrating the potential of such a combination in organic electronics.

  相似文献   


14.
Coupling polymerization initiators to molecular recognition events provide the ability to amplify these events and detect them using the formation of a cross‐linked polymer as an inexpensive readout that is visible to the unaided eye. The eosin‐tertiary amine co‐initiation system, activated by visible light, has proven utility in this context when an average of three eosin molecules are coupled to a protein detection reagent. The present work addresses the question of how detection sensitivity is impacted when the number of eosin molecules per binding event increases in the range of two to fifteen. Unlike in other initiation systems, a non‐monotonic relationship is observed between the number of initiators per binding event and the observed detection sensitivity.

  相似文献   


15.
A simple process is developed to fabricate metallo‐supramolecular nanogels (MSNs) by the metallo‐supramolecular‐coordinated interaction between histidine and iron‐meso‐tetraphenylporphin. MSNs are composed of histidine‐modified dextran (DH) and iron‐meso‐tetraphenylporphin (Fe–Por) and exhibit excellent biocompatibility and stability. MSNs show pH responsiveness in the intracellular mildly acidic environment, which has great potential for acid‐triggered drug release delivery. In vitro drug release profiles demonstrate that the pH‐dependent disassembly of MSNs to histidine and Por results in a quicker release rate of loaded‐DOX at pH 5.3, while at pH 7.4 MSNs could hinder the release of loaded‐DOX due to the enhanced stability of MSNs.

  相似文献   


16.
Ethylene–propylene–methyl methacrylate (MMA) and ethylene–hexene–MMA A‐B‐C block copolymers with high molecular weight (>100 000) are synthesized using fluorenylamide‐ligated titanium complex activated by modified methylaluminoxane and 2,6‐ditert‐butyl‐4‐methylphenol for the first time. After diblock copolymerization of olefin is conducted completely, MMA is added and activated by aluminum Lewis acid to promote anionic polymerization. The length of polyolefin and poly (methyl methacrylate) (PMMA) is controllable precisely by the change of the additive amount of olefin and polymerization time, respectively. A soft amorphous polypropylene or polyhexene segment is located between two hard segments of semicrystalline polyethylene and glassy PMMA blocks.

  相似文献   


17.
A novel strategy for the incorporation of carbon dioxide into polymers is introduced. For this purpose, the Ugi five‐component condensation (Ugi‐5CC) of an alcohol, CO2, an amine, an aldehyde, and an isocyanide is used to obtain step‐growth monomers. Polymerization via thiol‐ene reaction or polycondensation with diphenyl carbonate gives diversely substituted polyurethanes or alternating polyurethane‐polycarbonates, respectively. Furthermore, the application of 1,12‐diaminododecane and 1,6‐diisocyanohexane as bifunctional components in the Ugi‐5CC directly results in the corresponding polyamide bearing methyl carbamate side chains ( = 19 850 g mol−1). The latter polymer is further converted into the corresponding polyhydantoin in a highly straightforward fashion.

  相似文献   


18.
In this work, the incorporation of a 2,2,6,6‐tetramethylpiperydinyl‐1‐oxyl (TEMPO) group to a benzoxazine ring is performed using a one‐pot synthesis for the preparation of TEMPO‐functionalized benzoxazine compounds and polymers as reactive and crosslinkable initiators for nitroxide‐mediated polymerization (NMP). The TEMPO‐functionalization reaction of benzoxazine, traced with 1H NMR, is conducted with sequential radical transfer and coupling reactions. Moreover, polystyrene‐grafted polybenzoxazine copolymers are prepared with the TEMPO‐benzoxazine initiator and NMP of styrene. The polymerization system exhibits the characteristics of controlled radical polymerization, including controlled molecular weights of products and ability for sequential polymerization. Moreover, based on the chemical reactivity and crosslinking ability of benzoxazine groups, the synthesis route developed in this work will widen the scope of the design and synthesis of functional and high‐performance polymers.

  相似文献   


19.
Moisture or water has the advantages of being green, inexpensive, and moderate. However, it is challenging to endow water‐induced shape memory property and self‐healing capability to one single polymer because of the conflicting structural requirement of the two types of materials. In this study, this problem is solved through introducing two kinds of supramolecular interactions into semi‐interpenetrating polymer networks (semi‐IPNs). The hydrogen bonds function as water‐sensitive switches, making the materials show moisture‐induced shape memory effect. The host–guest interactions (β‐cyclodextrin‐adamantane) serve as both permanent phases and self‐healing motifs, enabling further increased chain mobility at the cracks and self‐healing function. In addition, these polyvinylpyrrolidone/poly(hydroxyethyl methacrylate‐co‐butyl acrylate) semi‐IPNs also show thermosensitive triple‐shape memory effect.

  相似文献   


20.
Nanoporous thin films with pore size of sub‐10 nm are fabricated using an acid‐cleavable block copolymer (BCP), a benzoic imine junction between poly(ethylene oxide) (PEO) and poly(methacrylate) (PMAAz) bearing an azobenzene side chain (denoted as PEO‐bei‐PMAAz) as the precursor. After a thermal annealing, the block copolymers are self‐assembled to form highly ordered PEO cylinders within a PMAAz matrix normal to the film, even in the case of low BCP molecular weight due to the existing of the liquid crystalline (LC) azobenzene rigid segment. Thus, PMAAz thin films with pore size of ≈7 nm and density of ≈1012 cm−2 are obtained after removal of the PEO minor phase by breaking the benzoic imine junction under mild acidic conditions. This work enriches the nanoporous polymer films from BCP precursors and introduces the LC property as a functionality which can further enhance the mechanical properties of the films and broaden their applications.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号