首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Switchable polymerization provides the opportunity to regulate polymer sequence and structure in a one‐pot process from mixtures of monomers. Herein we report the use of O2 as an external stimulus to switch the polymerization mechanism from the radical polymerization of vinyl monomers mediated by (Salen)CoIII?R [Salen=N,N′‐bis(3,5‐di‐tert‐butylsalicylidene)‐1,2‐cyclohexanediamine; R=alkyl] to the ring‐opening copolymerization (ROCOP) of CO2/epoxides. Critical to this process is unprecedented monooxygen insertion into the Co?C bond, as rationalized by DFT calculations, leading to the formation of (Salen)CoIII?O?R as an active species to initiate ROCOP. Diblock poly(vinyl acetate)‐b‐polycarbonate could be obtained by ROCOP of CO2/epoxides with preactivation of (Salen)Co end‐capped poly(vinyl acetate). Furthermore, a poly(vinyl acetate)‐b‐poly(methyl acrylate)‐b‐polycarbonate triblock copolymer was successfully synthesized by a (Salen)cobalt‐mediated sequential polymerization with an O2‐triggered switch in a one‐pot process.  相似文献   

2.
Communication: A diblock copolymer consisting of poly(methyl methacrylate) (PMMA) and poly(vinyl acetate) (PVAc) with hydroxyl group at one end is prepared by successive charge transfer polymerization (CTP) under UV irradiation at room temperature using ethanolamine and benzophenone as a binary initiation system. The diblock copolymer PMMA‐b‐PVAc could be selectively hydrolyzed to the block copolymer of poly(methyl methacrylate) and poly(vinyl alcohol) (PVA) using sodium ethoxide as the catalyst. Both copolymers, PMMA‐b‐PVAc and PMMA‐b‐PVA, are characterized in detail by means of FTIR and 1H NMR spectroscopy, and GPC. The effect of the solvent on CTP and the kinetics of CTP are discussed.  相似文献   

3.
A variety of conditions, including catalysts [CuCl, CuI, Cu2O, and Cu(0)], ligands [2,2′‐bipyridine (bpy), tris(2‐dimethylaminoethyl)amine (Me6‐TREN), polyethyleneimine, and hexamethyl triethylenetetramine], initiators [CH3CHClI, CH2I2, CHI3, and F(CF2)8I], solvents [diphenyl ether, toluene, tetrahydrofuran, dimethyl sulfoxide (DMSO), dimethylformamide, ethylene carbonate, dimethylacetamide, and cyclohexanone], and temperatures [90, 25, and 0 °C] were studied to assess previous methods for poly(methyl methacrylate)‐b‐poly(vinyl chloride)‐b‐poly(methyl methacrylate) (PMMA‐b‐PVC‐b‐PMMA) synthesis by the living radical block copolymerization of methyl methacrylate (MMA) initiated with α,ω‐di(iodo)poly(vinyl chloride). CH3CHClI was used as a model for α,ω‐di(iodo)poly(vinyl chloride) employed as a macroinitiator in the living radical block copolymerization of MMA. Two groups of methods evolved. The first involved CuCl/bpy or Me6‐TREN at 90 °C, whereas the second involved Cu(0)/Me6‐TREN in DMSO at 25 or 0 °C. Related ligands were used in both methods. The highest initiator efficiency and rate of polymerization were obtained with Cu(0)/Me6‐TREN in DMSO at 25 °C. This demonstrated that the ultrafast block copolymerization reported previously is the most efficient with respect to the rate of polymerization and precision of the PMMA‐b‐PVC‐b‐PMMA architecture. Moreover, Cu(0)/Me6‐TREN‐catalyzed polymerization exhibits an external first order of reaction in DMSO, and so this solvent has a catalytic effect in this living radical polymerization (LRP). This polymerization can be performed between 90 and 0 °C and provides access to controlled poly(methyl methacrylate) tacticity by LRP and block copolymerization. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1935–1947, 2005  相似文献   

4.
In situ Fourier transform near infrared (FTNIR) spectroscopy was successfully used to monitor monomer conversion during copper mediated living radical polymerization with N‐(n‐propyl)‐2‐pyridylmethanimine as a ligand. The conversion of vinyl protons in methacrylic monomers (methyl methacrylate, butyl methacrylate, and N‐hydroxysuccinimide methacrylate) to methylene protons in the polymer was monitored with an inert fiber‐optic probe. The monitoring of a poly(butyl methacrylate‐b‐methyl methacrylate‐b‐butyl methacrylate) triblock copolymer has also been reported with difunctional poly(methyl methacrylate) as a macroinitiator. In all cases FTNIR results correlated excellently with those obtained by 1H NMR. On‐line near infrared (NIR) measurement was found to be more accurate because it provided many more data points and avoided sampling during the polymerization reaction. It also allowed the determination of kinetic parameters with, for example, the calculation of an apparent first‐order rate constant. All the results suggest that FTNIR spectroscopy is a valuable tool to assess kinetic data. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4933–4940, 2004  相似文献   

5.
Vinyl monomers such as vinyl acetate, vinyl chloride, methyl methacrylate and styrene etc., can be polymerized without catalyst into the composites of bagasse material by gamma-radiation induced in situ liquid polymerization process. The fundamental factors, such as polymerization-rate, effect of swelling agent, molecular weight of vinyl polymers and graft reaction between bagasse cellulose and vinyl polymers, have been investigated and discussed. The use of suitable low G-value polar swelling agents and the application of suitable gamma dose-rate are two key factors found to control the smooth in situ liquid polymerization system of vinyl monomers in bagasse.  相似文献   

6.
Optically active homopolymers and copolymers, bearing chiral units at the side chain and end chain, were prepared via atom transfer radical polymerization (ATRP) techniques. The well‐defined optically active polymers were obtained via the ATRP of pregnenolone methacrylate (PR‐MA), β‐cholestanol acrylate (CH‐A), and 20‐(hydroxymethyl)‐pregna‐1,4‐dien‐3‐one acrylate (HPD‐A) with ethyl 2‐bromopropionate as the initiator and CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as the catalytic system. The experimental results showed that the polymerizations of PR‐MA, CH‐A, and HPD‐A proceeded in a living fashion, providing pendent chiral group polymers with low molecular weight distributions and predetermined molecular weights that increased linearly with the monomer conversion. Furthermore, the copolymers poly(pregnenolone methacrylate)‐b‐poly[(dimethylamino)ethyl methacrylate] and poly(pregnenolone methacrylate‐co‐methyl methacrylate) were synthesized and characterized with 1H NMR, transmission electron microscopy, and polarimetric analysis. In addition, when optically active initiators estrone 2‐bromopropionate and 20‐(hydroxymethyl)‐pregna‐1,4‐dien‐3‐one 2‐bromopropionate were used for ATRPs of methyl methacrylate and styrene, terminal optically active poly(methyl methacrylate) and polystyrene were obtained. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1502–1513, 2006  相似文献   

7.
The synthesis of polymer‐matrix‐compatible amphiphilic gold (Au) nanoparticles with well‐defined triblock polymer poly[2‐(N,N‐dimethylamino)ethyl methacrylate]‐b‐poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate] and diblock polymers poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate], polystyrene‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate], and poly(t‐butyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate] in water and in aqueous tetrahydrofuran (tetrahydrofuran/H2O = 20:1 v/v) at room temperature is reported. All these amphiphilic block copolymers were synthesized with atom transfer radical polymerization. The variations of the position of the plasmon resonance band and the core diameter of such block copolymer functionalized Au particles with the variation of the surface functionality, solvent, and molecular weight of the hydrophobic and hydrophilic parts of the block copolymers were systematically studied. Different types of polymer–Au nanocomposite films [poly(methyl methacrylate)–Au, poly(t‐butyl methacrylate)–Au, polystyrene–Au, poly(vinyl alcohol)–Au, and poly(vinyl pyrrolidone)–Au] were prepared through the blending of appropriate functionalized Au nanoparticles with the respective polymer matrices {e.g., blending poly[2‐(N,N‐dimethylamino)ethyl methacrylate]‐b‐poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate‐stabilized Au with the poly(methyl methacrylate)matrix only}. The compatibility of specific block copolymer modified Au nanoparticles with a specific homopolymer matrix was determined by a combination of ultraviolet–visible spectroscopy, transmission electron microscopy, and differential scanning calorimetry analyses. The facile formation of polymer–Au nanocomposites with a specific block copolymer stabilized Au particle was attributed to the good compatibility of block copolymer coated Au particles with a specific polymer matrix. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1841–1854, 2006  相似文献   

8.
Chain transfer constants were obtained for styrene, methyl methacrylate, methyl acrylate and vinyl acetate, polymerized in methyl oleate and methyl stearate at 60°C. Transfer constants increased in the order: methyl methacrylate < styrene < methyl acrylate ? vinyl acetate in both solvents. Average values of the transfer parameters were: for methyl oleate, Qtr = 2.04 × 10?4, etr = 1.08; for methyl stearate, Qtr = 0.373 × 10?4, etr = 1.01. Indication that polar species predominate in the transition state is supported by the observed order of reactivity. The usual rate dependence appeared to be followed by all of the monomers except vinyl acetate, which was retarded, severely in methyl oleate. Transfer in methyl oleate was about 5.8 times greater than that found in methyl stearate for these four monomers. The internal allylic double bond of methyl oleate had about the same reactivity in transfer as had the terminal unsaturation in N-allylstearamide at 90°C. Rough estimates were obtained of the monomer transfer constants for the long side-chain homologs of these four monomers from the respective monomer transfer constants and the experimental transfer constants, corrected for transfer to the labile groups of the solvent. It was concluded that the rate of polymerization would determine in large measure the degree of polymerization for the reactive 18-carbon homologs but that the molecular weight of poly(vinyl stearate) and (oleate) will be regulated primarily by transfer to monomer.  相似文献   

9.
This contribution describes the polymerization of 2,2,6,6‐tetramethylpiperidin‐4‐yl methacrylate by atom transfer radical polymerization (ATRP). Different catalytic systems are compared. The CuCl/4,4′‐dinonyl‐2,2′‐dipyridyl catalytic system allows a good control over the polymerization and provides polymers with a polydispersity index below 1.2. The successful polymerization of styrene from PTMPM‐Cl macroinitiators by ATRP is then demonstrated. Successful quantitative oxidation of PTMPM‐b‐PS block copolymers leads to poly(2,2,6,6‐tetramethylpiperidinyloxy‐4‐yl‐methacrylate)‐b‐poly(styrene) (PTMA‐b‐PS). The cyclic voltammogram of PTMA‐b‐PS indicates a reversible redox reaction at 3.6 V (vs. Li+/Li). Such block copolymers open new opportunities for the formation of functional organic cathode materials. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

10.
N‐Bromosuccinimide (NBS) was used as a thermal iniferter for the initiation of the bulk polymerizations of methyl methacrylate, methyl acrylate, and styrene. The polymerizations showed the characteristics of a living polymerization: both the yields and the molecular weights of the resultant polymers increased linearly as the reaction time increased. The molecular weight distributions of the polymers were 1.42–1.95 under the studied conditions. The resultant polymers could be used as macroiniferters to reinitiate the polymerization of the second monomer. The copolymers poly(methyl methacrylate)‐b‐polystyrene and polystyrene‐b‐poly(methyl methacrylate) were obtained and characterized. End‐group analysis of the resultant poly(methyl methacrylate), poly(methyl acrylate), and polystyrene confirmed that NBS behaved as a thermal iniferter. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2567–2573, 2005  相似文献   

11.
The results of quantitative studies of the rates of free-radical polymerization of vinyl ferrocene indicate that the latter has polymerization characteristics similar to those of styrene. The rates of homopolymerization of these two monomers in benzene at 70°C. were measured with the use of azobisisobutyronitrile as catalyst. The rate constants (k = Rp/[M][I]1/2) are kVF = (1.1 ? 1.8) × 10?4, kSTY = 1.65 × 10?4. Small amounts of vinyl ferrocene and styrene have similar effects on the rates of polymerizations of methyl methacrylate and ethyl acrylate and on the molecular weights of the resulting polymer. Polystyrene and poly(vinyl ferrocene) with similar molecular weights are isolated from polymerizations carried out under identical conditions. The rates of copolymerization of vinyl ferrocene—methyl methacrylate, vinyl ferrocene—styrene, and styrene—methyl methacrylate were determined by following the disappearance of monomers by means of gas chromatographic analyses. The relative reactivity for vinyl ferrocene is slightly lower than that for styrene.  相似文献   

12.
A new soluble terephthaloyl oligoperoxide (OTP) was synthesized by the reaction of terephthaloyl peroxide and 2,5‐dimethyl 2,5‐dihydroperoxy hexane. Thermal polymerization of vinyl monomers (styrene, methyl methacrylate) with OTP yielded poly(styrene peroxide) (PS‐P) and poly(methyl methacrylate peroxide) (PMMA‐P) which are used in the grafting reactions onto medium chain length unsaturated bacterial polyester obtained from soybean oily acids with Pseudomonas oleovorans poly(3‐hydroxy alkanoate), (PHA). PS‐g‐PHA and PMMA‐g‐PHA graft copolymers isolated from related homopolymers were characterizated by 1H NMR spectrometry, FT‐IR spectroscopy, thermal analysis and gel permeation chromatographic (GPC) techniques. Swelling measurement of the crosslinked graft copolymers were also measured to calculate qv values.  相似文献   

13.
Methacrylic acid (MAA), methyl methacrylate (MMA), methacrylamide, and oligomers of MAA and MMA were selected as a model of active radical species in living template polymerization using stereocomplex formation. The adsorption behaviors of the aforementioned model compounds were examined toward porous isotactic‐(it‐) poly(methyl methacrylate) (PMMA) ultrathin films on a quartz crystal microbalance, which was prepared by the extracting of syndiotactic‐(st‐) poly(methacrylic acid) (PMAA) from it‐PMMA/st‐PMAA stereocomplexes. The apparent predominant adsorption of oligomers to monomers was observed in both PMAA and PMMA oligomers, suggesting that the mechanism of template polymerization follows the pick up mechanism. Although vinyl monomers were not incorporated into the porous it‐PMMA ultrathin film, both PMMA and PMAA oligomers were adsorbed at the initial stages. However, adsorbed amounts were limited to about 5 and 15% at 0.1 mol L?1, respectively, which are much smaller values than corresponding st‐polymers. The results imply that radical coupling reaction is prevented during template polymerization to support the resulting living polymerization. ATR‐IR spectral patterns of oligomer complexes and it‐PMMA slightly changed in both cases, suggesting complex formation. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5879–5886, 2008  相似文献   

14.
Magnetic ionic liquid monomers were synthesized and then polymerized to get magnetic polymer latexes and films. First, a series of 1‐vinyl‐3‐dodecyl‐imidazolium monomers having metal halides counter‐anions such as FeCl3Br?, CoCl2Br?, and MnCl2Br? were synthesized. These ionic liquid monomers were first homopolymerized to lead to magnetic poly(ionic liquids) and characterized. Secondly, magnetic latexes were synthesized by using the magnetic ionic liquids as surfmers (surfactant + monomer) in the emulsion polymerization of methyl methacrylate/n‐butyl acrylate. It was found that the powders obtained by freeze‐drying the latexes presented a paramagnetic behavior with weak antiferromagnetic interactions between the adjacent metal ions. Although the ratio of magnetic ionic liquid/monomer was only 2% these poly(methyl methacrylate‐co‐butyl acrylate) powders and latexes responded to a magnetic field due to the surfmer paramagnetic nature. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1145–1152  相似文献   

15.
High‐molecular‐weight (MW) symmetrical multiblock copolymers, based on the hydrophobic monomers styrene (Sty) and methyl methacrylate (MMA), and the more polar monomer, 2‐vinyl pyridine (2VPy), were prepared using stepwise reversible addition‐fragmentation chain transfer polymerization. All copolymers shared a common poly(ethylene glycol) (PEG) midblock, introduced as a bifunctional macromolecular chain transfer agent. In total, five ABA triblock copolymers, five ABCBA pentablock terpolymers, and two ABCDCBA heptablock quaterpolymers (comprising four different monomer types) were synthesized. The MWs of the multiblock polymers were determined using gel permeation chromatography (GPC) and proton nuclear magnetic resonance (1H NMR) spectroscopy, with the latter values being closer to the theoretically expected, whereas GPC MW distributions were relatively narrow, broadening with the number of blocks. The compositions of the synthesized polymers, as determined by 1H NMR spectroscopy, were also close to the expected values. Finally, films cast from chloroform solutions of the pentablock terpolymers P2VPy‐b‐PSty‐b‐PEG‐b‐PSty‐b‐P2VPy, PSty‐b‐PMMA‐b‐PEG‐b‐PMMA‐b‐PSty, and P2VPy‐b‐PMMA‐b‐PEG‐b‐PMMA‐b‐P2VPy examined using transmission electron microscopy exhibited PSty and PMMA cylinders (first two) and lamellae (third terpolymer). © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4957–4965  相似文献   

16.
The atom transfer radical polymerization of styrene and methyl methacrylate with FeCl2/iminodiacetic acid as the catalyst system in bulk was successfully implemented at 70 and 110 °C, respectively. The polymerization was controlled: the molecular weight of the resultant polymer was close to the calculated value, and the molecular weight distribution was relatively narrow (weight‐average molecular weight/number‐average molecular weight ∼ 1.5). Block copolymers of polystyrene‐b‐poly(methyl methacrylate) and poly(methyl methacrylate)‐b‐poly(methyl acrylate) were successfully synthesized, confirming the living nature of the polymerization. A small amount of water added to the reaction system increased the reaction rate and did not affect the living nature of the polymerization system. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4308–4314, 2000  相似文献   

17.
Cationic polymerization of tetrahydrofuran (THF) and epichlorohydrin (ECH) was performed with peroxy initiators synthesized from bis (4,4′‐bromomethyl benzoyl peroxide (BBP) or bromomethyl benzoyl t‐butyl peroxy ester (t‐BuBP) and AgSbF6 or ZnCl2 system at 0 °C to obtain the poly(THF‐b‐ECH) macromonomeric peroxy initiators. Kinetic studies were accomplished for poly(THF‐b‐ECH) initiators. Poly(THF‐b‐ECH‐b‐MMA) and poly(THF‐b‐ECH‐b‐S) block copolymers were synthesized by bulk polymerization of methyl methacrylate (MMA) and styrene (S) with poly(THF‐b‐ECH) initiators. The quantum chemical calculations for the block copolymers, the initiating systems of the cationic polymerization of THF and ECH were achieved using HYPERCHEM 7.5 program. The optimized geometries of the polymers were investigated with the quantum chemical calculations. Poly(THF‐b‐ECH) initiators having peroxygen groups were used for graft copolymerization of polybutadien (PBd) to obtain poly(THF‐b‐ECH‐g‐PBd) crosslinked graft copolymers. The graft copolymers were investigated by sol‐gel analysis. Swelling ratio values of the graft copolymers in CHCl3 were calculated. The characterizations of the polymers were achieved by FTIR, 1H NMR, GPC, SEM, TEM, and DSC techniques. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2896–2909, 2010  相似文献   

18.
In this research, poly(methyl methacrylate)‐b‐poly(butyl acrylate) (PMMA‐b‐PBA) block copolymers were prepared by 1,1‐diphenylethene (DPE) controlled radical polymerization in homogeneous and miniemulsion systems. First, monomer methyl methacrylate (MMA), initiator 2,2′‐azobisisobutyronitrile (AIBN) and a control agent DPE were bulk polymerized to form the DPE‐containing PMMA macroinitiator. Then the DPE‐containing PMMA was heated in the presence of a second monomer BA, the block copolymer was synthesized successfully. The effects of solvent and polymerization methods (homogeneous polymerization or miniemulsion polymerization) on the reaction rate, controlled living character, molecular weight (Mn) and molecular weight distribution (PDI) of polymers throughout the polymerization were studied and discussed. The results showed that, increasing the amounts of solvent reduced the reaction rate and viscosity of the polymerization system. It allowed more activation–deactivation cycles to occur at a given conversion thus better controlled living character and narrower molecular weight distribution of polymers were demonstrated throughout the polymerization. Furthermore, the polymerization carried out in miniemulsion system exhibited higher reaction rate and better controlled living character than those in homogeneous system. It was attributed to the compartmentalization of growing radicals and the enhanced deactivation reaction of DPE controlled radical polymerization in miniemulsified droplets. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4435–4445, 2009  相似文献   

19.
The synthesis by reversible addition‐fragmentation chain transfer (RAFT) polymerization of three phosphonated terpolymers with tailored architecture has been studied. A phosphonated methacrylate (MAUPHOS) was copolymerized with vinylidene chloride (VC2) and methyl acrylate (MA) to prepare a gradient terpolymer poly(VC2co‐MA‐co‐MAUPHOS). Besides, hydroxyethyl acrylate (HEA) was used as a functional monomer in RAFT polymerization to prepare a statistical poly(VC2co‐MA‐co‐HEA) terpolymer and a diblock poly(VC2co‐MA)‐b‐poly(HEA) terpolymer. The HEA‐containing polymers were then modified with a phosphonated epoxide to introduce the phosphonated group. The control of the polymerization was proven by kinetic studies (evolution of molecular weight vs. conversion) and by a successful block copolymerization. The architecture of the terpolymers was determined by the reactivity ratios of the monomers: terpolymerization of VC2, MA, and HEA leading to an ideal statistical terpolymer (no composition drift) whereas terpolymerization of VC2, MA, and the phosphonated methacrylate led to a gradient terpolymer. These terpolymers were characterized by size exclusion chromatography, 31P NMR and differential scanning calorimetry. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 13–24, 2006  相似文献   

20.
Linear triblock terpolymers of poly(n‐butyl methacrylate)‐b‐poly(methyl methacrylate)‐b‐poly(2‐fluoroethyl methacrylate) (PnBMA‐PMMA‐P2FEMA) were synthesized by sequential reversible addition fragmentation chain transfer (RAFT) polymerization. Kinetic studies of the homopolymerization of 2FEMA by RAFT polymerization demonstrated controllable characteristics with fairly narrow polydispersities (~1.30). The resultant PnBMA‐PMMA‐P2FEMA triblock terpolymers were characterized via 1H NMR, 19F NMR, and gel permeation chromatography. These polymers formed micellar aggregates in a selective solvent mixture. The as‐formed micelles were analyzed using scanning electron microscopy and dynamic light scattering. It was found that these terpolymers could directly self‐organize into complex micelles in a tetrahydrofuran/methanol mixture with diameters that depended on polymer composition. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号