首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A single phased white light emitting phosphors K2Ca1−xyP2O7: xEu2+, yMn2+ were synthesized by solid state reaction method. The Effective energy transfer occurs in this phosphor due to the large spectral overlap between the emission of Eu2+ and the excitation of Mn2+. The emission hue of K2Ca1−xyP2O7: xEu2+, yMn2+ from blue to white light can be obtained by tuning the Eu2+/Mn2+ content ratio. The energy transfer mechanism from Eu2+ to Mn2+ in this phosphor was carefully investigated and demonstrated to be via the dipole–quadrupole interaction.  相似文献   

2.
The ferrimagnetic compounds Ca(CuxMn3?x)Mn4O12 of the double distorted perovskites AC3B4O12 family exhibit a rapid increase of the ferromagnetic component in magnetization at partial substitution of square coordinated (Mn3+)C for (Cu2+)C. In the transport properties, this is seen as a change of the semiconducting type of resistivity for the metallic one. The evolution of magnetic properties of Ca(CuxMn3?x)Mn4O12 is driven by strong antiferromagnetic exchange interaction of (Cu2+)C with (Mn3+/Mn4+)B coordinated octahedra. The competing interactions of (Mn3+)C with (Mn3+/Mn4+)B lead to the formation of noncollinear magnetic structures that can be aligned by magnetic fields.  相似文献   

3.
A series of color tunable phosphors K2Ca1?x?yP2O7:xMn2+, yEu3+ are synthesized by solid state reaction method. The energy transfer phenomenon from Mn2+ to Eu3+ has been observed in the Mn2+/Eu3+ codoped non-magnetic K2CaP2O7 host, which was confirmed by PL spectra and decay curves. The Mn2+→Eu3+ energy transfer is controlled by quadrupole–quadrupole interaction between sensitizer and activator. The maximum efficiency of energy transfer is estimated to be 33% with x=0.125 and y=0.03 in K2Ca1?x?yP2O7:xMn2+, yEu3+ phosphor. The phosphors can emit light from green to yellow and eventually to orange under 400 nm excitation by changing the Mn2+/Eu3+ content ratio, indicating that K2CaP2O7: Mn2+, Eu3+ would be potential candidates for use in lighting and displays applications.  相似文献   

4.
LiFe1 − xMnxPO4 olivines are promising material for improved performance of Li‐ion batteries. Spin–phonon coupling of LiFe1 − xMnxPO4 (x = 0, 0.3, 0.5) olivines is studied through temperature‐dependent Raman spectroscopy. Among the observed phonon modes, the external mode at ~263 cm−1 is directly correlated with the motions of magnetic Fe2+/Mn2+ ions. This mode displays anomalous temperature‐dependent behavior near the Néel temperature, indicating a coupling of this mode with spin ordering. As Mn doping increases, the anomalous behavior becomes clearly weaker, indicating the spin–phonon coupling quickly decreases. Our analyses show that the quick decrease of spin–phonon coupling is due to decrease of the strength of spin–phonon coupling, but not change of spin‐ordering feature with Mn doping. Importantly, we suggest that the low electrochemical activity of LiMnPO4 is correlated with the weak spin–phonon coupling strength, but not with the weak ferromagnetic ground state. Our work would play an important role as a guide in improving the performances of future Li‐ion batteries. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Eu2+ and Mn2+ co-doped SrMg2(PO4)2 phosphors with blue and red two emission bands were prepared by the high temperature solid state method and their luminescent properties have been investigated as a function of activator and co-activator concentrations. Resonance-type energy transfers from Eu2+ to Mn2+ were discovered by directly overlapping the Eu2+ emission spectrum and the excitation spectrum of Mn2+. Efficiencies of energy transfer were also calculated according to the changes of relative intensities of Eu2+ and Mn2+ emission. According to the principle of energy transfer, we demonstrated that the phosphor SrMg2(PO4)2:Eu2+,Mn2+ with double emission bands exhibited a great potential as a phosphor for ultraviolet light-emitting diodes and the relative intensities of blue and red emission could be tuned by adjusting the contents of Eu2+ and Mn2+. PACS 78.55.-m  相似文献   

6.
Eu2+ and Mn2+ co-doped Ca8Zn(SiO4)4Cl2 phosphors have been synthesized by a high temperature solid state reaction. Energy transfer from Eu2+ to Mn2+ is observed. The emission spectra of the phosphors show a green band at 505 nm of Eu2+ and a yellow band at 550 nm of Mn2+. The excitation spectra corresponding to 4f7-4f65d transition of Eu2+ cover the spectral range of 370-470 nm, well matching UV and/or blue LEDs. The shortening of fluorescent lifetimes of Eu2+ followed by simultaneous increase of fluorescent intensity of Mn2+ with increasing Mn2+ concentrations is studied based on energy transfer. Upon blue light excitation the present phosphor can emit intense green/yellow in comparison with other chlorosilicate phosphors such as Eu2+ and Mn2+ co-doped Ca8Mg(SiO4)4Cl2 and Ca3SiO4Cl2, demonstrating a potential application in phosphor converted white LEDs.  相似文献   

7.
A novel phosphor, Mn4+ doped La2LiTaO6, was developed by solid-state reaction method. The luminescent spectra and emission efficiencies of La2LiTaO6:Mn x 4+ (x = 0.001, 0.003, 0.005 and 0.01) were discussed. The effects of co-doped charge compensation ions, M = Mg2+, Ca2+, Na+, were investigated, respectively. The excitation spectra indicated that La2LiTaO6:Mn4+ could be effectively excited by both NUV light and blue light. The emission spectra of the phosphor exhibit a broadband ranging from 670 to 720 nm with the maximum at about 709 nm in deep red region. The co-doping of Mg2+ could significantly improve the luminescent properties of La2LiTaO6:Mn4+. Thus, phosphor La2LiTaO6:Mn4+, Mg2+ can serve as a key component to improve color rendering of blue-chip white-LEDs.  相似文献   

8.
Currently, the major commercial white light‐emitting diode (WLED) is the phosphor‐converted LED made of the InGaN blue‐emitting chip and the Ce3+:Y3Al5O12 (Ce:YAG) yellow phosphor dispersed in organic epoxy resin or silicone. However, the organic binder in high‐power WLED may age easily and turn yellow due to the accumulated heat emitted from the chip, which adversely affects the WLED properties such as luminous efficacy and color coordination, and therefore reduces its long‐term reliability as well as lifetime. Herein, an innovative luminescent material: transparent Ce:YAG phosphor‐in‐glass (PiG) inorganic color converter, is developed to replace the conventional resin/silicone‐based phosphor converter for the construction of high‐power WLED. The PiG‐based WLED exhibits not only excellent heat‐resistance and humidity‐resistance characteristics, but also superior optical performances with a luminous efficacy of 124 lm/W, a correlated color temperature of 6674 K and a color rendering index of 70. This easy fabrication, low‐cost and long‐lifetime WLED is expected to be a new‐generation indoor/outdoor high‐power lighting source.  相似文献   

9.
A sequential, fully first-principle theoretical study of the Mn2+ green emission bands in the Zn2SiO4:Mn2+ phosphor is presented for the first time. A combined approach is developed based on the modern periodic density-functional theory and cluster ab initio wave-function-based electronic structure methods, the linear response theory for lattice phonons, and generating function formalism of vibronic spectra within the displaced multi-mode harmonic oscillator model. We obtain fairly good agreement between the calculated low- and high-temperature emission band positions, widths, zero-phonon lines and phonon wings and the available experimental emission studies, with special emphasis on Mn2+ distribution over two non-equivalent Zn2+ sites in the Zn2SiO4 material. An interpretation for vibronic structure observed in the low-temperature emission spectrum of this phosphor is suggested based on the present first-principle study.  相似文献   

10.
Synthesized by a modified solid state method in air and mixed with MgO, the red phosphor of CaAl12O19:yMn4+ (y=0.001-1.5%) enhanced its photoluminescence efficiency by 3.5 times. The influence of MgO on crystal phases, luminescence intensity and spectral characteristics of the composition modified phosphor has been investigated by spectroscopic experiments and luminescence decay measurements. It is observed that the decay time of Mn4+ luminescence prolongs linearly with increase of MgO in the composition, indicating that the excitation energy transfer and non-radiative relaxation between Mn4+-Mn4+ pairs decrease. The presence of Mg2+ leads to a transformation of Mn4+-Mn4+ pairs connected with interstitial O2− to isolated Mn4+ ions and therefore eliminates energy transfer and provides charge compensation as well.  相似文献   

11.
Sr6BP5O20:Eu2+ phosphor was prepared by the solid-state reaction method under a weak reductive atmosphere and the photoluminescence properties were studied systematically. The bluish-green emission band of Sr6BP5O20:Eu2+ phosphor is peaking at 475 nm, and the excitation bands are broad with peaks at about 290 and 365 nm with a shoulder around 390 nm, respectively. By combining with Ga(In)N-based near-ultraviolet LEDs, a bluish-green LED was fabricated based on the Sr6BP5O20:Eu2+ phosphor, and a novel intense white LED was fabricated based on the bluish-green phosphor Sr6BP5O20:Eu2+ and the red phosphor (Sr,Ca)5(PO4)3Cl:Eu2+,Mn2+. When this two-phosphor white LED is operated under 20-mA forward-bias current at room temperature, the Commission Internationale de l’Eclairage(CIE) chromaticity coordinates (x,y), the correlated color temperature Tc, and the color rendering index Ra are calculated to be (0.3281,0.3071), 5687 K, and 87.3, respectively. The dependence of the bluish-green and two-phosphor white LEDs on different forward-bias currents from 5 mA to 50 mA shows a similar behavior. As the current increases, the relative intensity simultaneously increases. The CIE chromaticity coordinates (x,y) of the two-phosphor white LED tend to decrease. Consequently, the correlated color temperature Tc increases from 3800 K to 9400 K and the color rendering index Ra of the two-phosphor white LED increases from 83.4 to 91.8 simultaneously. PACS 07.60.-j; 42.70.-a; 71.55.Eq  相似文献   

12.
The Dy3+ and Eu3+ activated K3Al2 (PO4)3 phosphors were prepared by a combustion synthesis. From a powder X-ray diffraction (XRD) analysis the formation of K3Al2 (PO4)3 was confirmed. In the photoluminescence emission spectra, the K3Al2(PO4)3:Dy3+ phosphor emits two distinctive colors: blue and yellow whereas K3Al2(PO4)3:Eu3+ emits red color. Thus the combination of colors gives BYR (blue–yellow–red) emissions can produce white light. These phosphors exhibit a strong absorption between 340 and 400 nm which suggest that present phosphor is a promising candidate for producing white light-emitting diodes (LED).  相似文献   

13.
Changyu Shen  Yi Yang  Huajun Feng 《Optik》2010,121(1):29-32
The shift of the emission band to longer wavelength (yellow-orange) of the Ba2MgSi2−xAlxO7: 0.1Eu2+ phosphor under the 350-450 nm excitation range has been achieved by adding the codoping element (Mn2+) in the host. The single-host silicate phosphor for WLED, Ba2MgSi2−xAlxO7: 0.1Eu2+, 0.1Mn2+ was prepared by high-temperature solid-state reaction. It was found experimentally that, its three-color emission peaks are situated at 623, 501 and 438 nm, respectively, under excitation of 350-450 nm irradiation. The emission peaks at 438 and 501 nm originate from the transition 5d to 4f of Eu2+ ions that occupy the two Ba2+ sites in the crystal of Ba2MgSi2−x AlxO7, while the 623 nm emission is attributed to the energy transfer from Eu2+ ions to Mn2+ ions. The white light can be obtained by mixing the three emission colors of blue (438 nm), green (501 nm) and red (623 nm) in the single host. When the concentrations of the Al3+, Eu2+ and Mn2+ ions were 0.4, 0.1 and 0.1 mol, respectively, the sample presented intense white emission. The addition of Al ion to the host leads to a substantial change of intensity ratio between blue and green emissions. White light could be obtained by combining this phosphor with 405 nm light-emitting diodes. The near-ultraviolet GaN-based Ba2MgSi1.7 Al0.3O7: 0.1Eu2+, 0.1Mn2+ LED achieves good color rendering of over 85.  相似文献   

14.
A phosphate compound, BaMgP2O7 was co-doped with Eu2+ and Mn2+ for making a red-emitting phosphor. The phosphor was prepared by a solid-state reaction at high temperature. The photoluminescence properties were investigated under ultraviolet (UV) ray excitation. From a powder X-ray diffraction (XRD) analysis, the formation of single-phased BaMgP2O7 with a monoclinic structure was confirmed. In the photoluminescence spectra, the BaMgP2O7:Eu,Mn phosphor emits two distinctive colors: a blue band centered at 409 nm originating from Eu2+ and a red band at 615 nm caused by Mn2+. Also, efficient energy transfer from Eu2+ to Mn2+ in the BaMgP2O7:Eu,Mn system was verified by observing that the excitation spectra of BaMgP2O7:Eu,Mn emitted at 409 and 615 nm by Eu2+ emission and Mn2+ emission, respectively, are almost the same as that of BaMgP2O7:Eu monitored at 409 nm. The optimum concentration of Eu2+ ions in BaMgP2O7:0.015Eu excited at 309 nm wavelength is 1.5 mol%. With an increase of Mn2+ content up to 17.5 mol%, a systematic decline in the intensity of the excitation spectrum by Eu2+ and a gradual growth in the intensity of emission band by Mn2+ were observed. Accordingly, the optimum concentration of Mn2+ in BaMgP2O7:0.015Eu,Mn is 17.5 mol%. The maximum spectral overlap between emission of Eu2+ and excitation of Mn2+ is achieved in a composition of BaMgP2O7:0.015Eu,0.175Mn, resulting in considerable red-emission at 615 nm.  相似文献   

15.
A new red-emitting phosphor Ca9Lu(PO4)7:Ce3+, Mn2+ has been synthesized by solid-state reaction, and its luminescence properties have been investigated. The broad red emission peaked at 645 nm of Mn2+ is greatly enhanced by the sensitizer Ce3+ due to efficient energy transfer from Ce3+ to Mn2+. The energy transfer was demonstrated to belong to a resonant type via a dipole–quadrupole mechanism. The critical distance for Ce3+→Mn2+ energy transfer was calculated to be 15.04 Å by concentration quenching method. Preliminary results indicate that the phosphor might be a promising red phosphor for UV-based white LEDs.  相似文献   

16.
《Physics letters. A》2019,383(17):2102-2105
Ba2LaSbO6:Mn4+, Ba2LaSbO6:Mn4+, Dy3+, and Ba2LaSbO6:Mn4+, H3BO3 phosphors are synthesized in the air by high temperature solid state reaction method. The particle sizes and sintering degree of Ba2LaSbO6:Mn4+ phosphor may be changed by doping Dy3+ ion and H3BO3. When the small amount of Dy3+ ion and H3BO3 are codoped, the emission intensity of Ba2LaSbO6:Mn4+ phosphor can be enhanced 1.2–1.3 times and the quantum efficiency of Ba2LaSbO6:Mn4+ phosphor can be improved. The lifetime of Ba2LaSbO6:Mn4+ phosphor may be changed by doping Dy3+ ion and H3BO3. The experimental results are valuable in research of luminescence property of Mn4+-doped luminescence materials.  相似文献   

17.
The host sensitized near‐infrared (NIR) emitting phosphor Sr2CaMoO6:Yb3+ was fabricated by the solid state reaction method. The structural refinement and Raman spectra elucidate that Yb3+ ions preferentially occupy Ca2+ sites. The phosphor can harvest ultraviolet (UV)–blue photons and exhibits intense NIR emission at around 1012 nm with full‐width‐at‐half‐maximum of 1635 cm–1. Moreover, the absolute NIR photoluminesence quantum yield (PLQY) is estimated to be about 9%. The Sr2CaMoO6:Yb3+ phosphor may be a promising luminescence downshifting material for improving the spectral response of solar cells in the UV region. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Anomalous temperature dependence of Raman phonon wavenumbers attributed to phonon–phonon anharmonic interactions has been studied in two different families of pyrochlore titanates. We bring out the role of the ionic size of titanium and the inherent vacancies of pyrochlore in these anomalies by studying the effect of replacement of Ti4 + by Zr4 + in Sm2Ti2O7 and by stuffing Ho3 + in place of Ti4 + in Ho2Ti2O7 with appropriate oxygen stoichiometry. Our results show that an increase in the concentration of the larger ion, i.e. Zr4 + or Ho3 +, reduces the phonon anomalies, thus implying a decrease in the phonon–phonon anharmonic interactions. In addition, we find signatures of coupling between a phonon and crystal field transition in Sm2Ti2O7, manifested as an unusual increase in the phonon intensity with increasing temperature. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The green emission intensity of ZnGa2O4:Ge4+, Li+, Mn2+ excited by the vacuum ultraviolet line of 147 nm reaches 70% of commercial green Zn2SiO4:Mn2+. The vacuum ultraviolet excitation spectra consist of four peaks. In a plasma display test bed filled with Ar and Ne plasma discharged by a radio-frequency generator of 13.6 MHz, ZnGa2O4:Ge4+, Li+, Mn2+ and commercial Zn2SiO4:Mn2+ phosphor screens show a linear increase in luminance with increasing self bias voltages. Increasing gas pressures cause the luminance to increase. Also, on increasing the self bias voltages and the gas pressures, the current densities of ZnGa2O4:Ge4+, Li+, Mn2+ phosphor screens are increased; this is the same behavior as that of the commercial phosphor.  相似文献   

20.
A dual‐emission ratiometric fluorescent sensing film for metal ion detection is designed. This dual‐emission film is successfully prepared from chitosan, graphitic carbon nitride (g‐C3N4), and gold nanoclusters (Au NCs). Here, it is shown that the g‐C3N4 not only serves as the fluorescence emission source, but also enhances the mechanical and thermal stability of the film. Meanwhile, the Au NCs are adsorbed on the surface of chitosan film by the electrostatic interaction. The as‐prepared dual‐emission film can selectively detect Cu2+, leading to the quench of red fluorescence of Au NCs, whereas the blue fluorescence from g‐C3N4 persists. The ratio of the two fluorescence intensities depends on the Cu2+ concentration and the fluorescence color changes from orange red to yellow, cyan, and finally to blue with increasing Cu2+ concentration. Thus, the as‐prepared dual‐emission film can be worked as ratiometric sensing paper for Cu2+ detection. Furthermore, the film shows high sensitivity and selectivity, with low limit of detection (LOD) (10 ppb). It is observed that this novel gold‐cluster‐based dual‐emission ratiometric fluorescent sensing paper is an easy and convenient way for detecting metal ions. It is believed that this research work have created another avenue for the detection of metal ions in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号