共查询到20条相似文献,搜索用时 12 毫秒
1.
A ZrO2–TiO2 solid solution is obtained by high energy ball milling of equimolar mixture of monoclinic (m) ZrO2 and anatase (a) TiO2. Nanocrystalline orthorhombic ZrTiO4 compound is initiated from the nucleation of TiO2–ZrO2 solid solution with isostructural s-TiO2 (srilankite) base after 30 min of milling. After 12 h of milling, 95 mol% non-stoichiometric ZrTiO4 phase is formed. Post-annealing of 12 h ball-milled powder mixture at 1073 K for 1 h in open air results in complete formation of stoichiometric ZrTiO4 compound. Microstructures of all powder mixtures milled for different durations have been characterized by Rietveld's structure and microstructure refinement method using X-ray powder diffraction data. HRTEM images of 12 h milled and annealed samples provide direct evidence of the results obtained from the Rietveld analysis. Optical bandgaps of ball milled and annealed ZrTiO4 compounds lie within the semiconducting region (~2.0 eV) and increases with increase in milling time. 相似文献
2.
Nanocrystalline NiFe2O4 was in‐situ prepared in amorphous silica using tetramethylor‐thosilicate and nickel (iron) nitrate hydrate as the starting materials in a sol‐gel reaction. The magnetic nanocrystals in the amorphous silica glasses grew slowly with increasing temperature. Above 600○C, nickel ferrite nanoparticles began to precipitate from the amorphous silica matrix. Mössbauer spectroscopy of the nanocomposites suggested that in the silica glasses, Fe ions were present exclusively as Fe3+ in octahedral coordination, and the chemical environment of the Fe3+ ions appeared to remain unchanged until the crystallization of nickel ferrite nanocrystals. The formation of NiFe2O4 nanocrystals was the result of partial transformation of the FeO6 octahedra to FeO4 tetrahedra. The nanocrystalline NiFe2O4 are characterized by super‐paramagnetic behaviour at room temperature. 相似文献
3.
Ultrafine MgAl2O4 powder has been synthesized by a polymerized complex method. Heating of a precursor solution containing citric acid (CA), ethylene glycol (EG) and Mg and Al salts with a molar ratio of Mg/Al/CA/EG=1/2/8/32 at 180°C produced a transparent polymeric gel, which have been characterized by FT-IR spectroscopy and TG/DTA. The organic fraction was removed by controlled thermal treatments (350–1200°C) whereby the bimetallic oxide was formed. XRD analysis showed the presence of MgAl2O4 at 600°C. TEM observation showed that the spherical nanosized powders with good uniformity was obtained. Furthermore, these powders showed excellent sinterability, relative density up to 99.8% was achieved when sintered at 1550°C for 3 h in air without any sintering additive. 相似文献
4.
Trevor P. Almeida Fabrizio Moro Michael W. Fay Yanqiu Zhu Paul D. Brown 《Journal of nanoparticle research》2014,16(5):1-13
The aim of this study was to prepare a novel targeting nano drug delivery system of 2-methoxyestradiol (2-ME) based on the folic acid-modified bovine serum albumin, in order to improve the clinical application disadvantages and antitumor effect of 2-ME. In this study, 2-methoxyestradiol-loaded albumin nanoparticles (2-ME-BSANPs) were prepared by desolvation method, and then the activated folic acid was conjugated to 2-ME-BSANPs by covalent attachment (2-ME-FA-BSANPs). The size and zeta potential of 2-ME-FA-BSANPs were about 208.8 ± 5.1 nm and ?32.70 ± 1.01 mV, respectively. 2-ME loading efficiency and loading amount of the nanoparticles were 80.49 ± 3.80 and 10.25 ± 1.59 %, respectively. SEM images indicated that 2-ME-FA-BSANPs were of a round shape, similar uniform size, and smooth surface. Studies on drug release indicated that 2-ME-FA-BSANPs had the properties of sustained and controlled release, which provided them with the ability to fight continually against cancer cells. Internalization analysis demonstrated that 2-ME-FA-BSANPs-targeting drug delivery system could get efficiently transferred into the cells through the folic acid-mediated endocytosis, leading to higher apoptosis and affording higher antitumor efficacy against SMMC-7721 cells in vitro compared with 2-ME alone. Furthermore, the cell-cycle arrest of 2-ME-FA-BSANPs on the SMMC-7721 cells occurred at G2/M phase, and 2-ME-FA-BSANPs did not change the inhibition of the tumor mechanisms of 2-ME. Based on these results, it was concluded that albumin nanoparticles could be the promising nano carrier for 2-ME, and 2-ME-FA-BSANPs-targeting drug delivery system may be promising candidate for providing high treatment efficacy with minimal side effects in future cancer therapy. 相似文献
5.
6.
Meskin PE Ivanov VK Barantchikov AE Churagulov BR Tretyakov YD 《Ultrasonics sonochemistry》2006,13(1):47-53
Ultrasonic-hydrothermal and hydrothermal treatment was used for synthesis of nanocrystalline zirconia, titania, nickel and nickel-zinc ferrites powders from precipitated amorphous zirconyl, titanyl, binary nickel-iron and ternary nickel-zinc-iron hydroxides, respectively. Resulted nanopowders were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen adsorption (BET), and magnetic susceptibility measurements. It was established that ultrasonically assisted hydrothermal treatment of amorphous zirconyl and titanyl gels results in significant rise of the rate of ZrO2 and TiO2 crystallization and promotes formation of thermodynamically stable monoclinic zirconia, but does not affect the microstructure and mean particles size of resulting nanopowders. Ultrasonic-hydrothermal processing of co-precipitated amorphous nickel, zinc and iron hydroxides favours formation of nanocrystalline ferrite powders with narrower particle size distribution. 相似文献
7.
8.
以硝酸铁、硝酸镍以及柠檬酸为原料,采用凝胶-热分解法制备了N iFe2O4纳米粉末。利用X射线衍射确定了粉体的相结构、比表面积和晶格常数,扫描电子显微镜(SEM)观察了颗粒的形貌,振动样品磁强计(VSM)测量样品的磁性能。结果表明:所制备的样品均为尖晶石结构,颗粒粒径为36nm~68nm,且颗粒的粒径随着热处理温度的升高而增大,样品的比饱和磁化强度最大可达54.63 emu/g。同时,文章也对反应的动力学原理进行了研究,得出N iFe2O4纳米颗粒形成的活化能为15.8kJ/mol。 相似文献
9.
We report the temperature dependence of the magnetic properties of (Ni, Cu)Fe2O4 spinel oxides. Mössbauer spectra for NiFe2O4 at various temperatures (79 ≤?T?≤ 900 K) are well fitted by two sextets associated with 57Fe nuclei at tetrahedral (A) and octahedral (B) sites. The Curie point T C was deduced by zero velocity Mössbauer technique to be 873 ± 3 K. The hyperfine fields are observed to vary with temperature according to the equation $B_{\rm hf} (T)=B_{\rm hf} (0)[{1-(T/T_{\rm C})^n}]^{\beta_n}$ where n?=?1 (based on the Landau–Ginzburg theory) and n?=?2 (based on the Stoner theory). A systematic decrease of the Mössbauer spectrum shift with increasing temperature is observed. 相似文献
10.
11.
Nanoparticles of cobalt ferrite prepared by the co-precipitation method with crystallite size varying from 4.7 to 41 nm have been characterized by positron annihilation lifetime spectroscopy. Three lifetime components are fitted to the lifetime data. The shortest lifetime component is attributed to the delocalized positron lifetime shortened by defect trapping. The intermediate lifetime is assigned to the positron annihilation in diffuse vacancy clusters or microvoids at the grain boundaries and at the grain-boundary triple points. The longest component corresponds to the pick-off annihilation of ortho-positronium formed at the larger voids. The variations in these lifetimes and their relative intensities with annealing temperature and crystallite size have been studied in detail. 相似文献
12.
U. Lüders M. Bibes J.F. Bobo J. Fontcuberta 《Applied Physics A: Materials Science & Processing》2005,80(2):427-431
We have grown NiFe2O4 thin films on (001)-oriented SrTiO3 and (001)-oriented Pt underlayers. Although these two templates present a similar lattice mismatch with NiFe2O4 (about -6%), the ferrite grows cube-on-cube with a (001) orientation on SrTiO3 and (111)-textured on Pt, with four different in-plane variants. This evidences that the interface energy between NiFe2O4 and Pt or SrTiO3 is the key parameter ruling the film texture, while the elastic energy appears as a second-order factor. We compare the structural and magnetic properties of these two films and discuss possible applications of our findings. PACS 68.55.Jk; 75.50.Gg 相似文献
13.
Li Fa-Shen Yue De-Sheng Zeng Hua-Xin Liu Xin-Fen Yang Zheng 《Hyperfine Interactions》1988,41(1):525-528
MFe2(C2O4)3*6H2O (M=Ni, Zn) powders were prepared by oxalate coprecipitation. Using Mössbauer spectroscopy, XRD, DTA and TEM, the thermal decomposition of MFe2(C2O4)3*6H2O and the formation process of NiFe2O4 and ZnFe2O4 were investigated. 相似文献
14.
Jian Li Yueqiang Lin Xiaodong Liu Qingmei Zhang Hua Miao Tingzhen Zhang 《Phase Transitions》2013,86(1):49-57
In this study, the NiFe2O4 nanoparticles have been prepared by co-precipitation and calcination process. Using a vibrating sample magnetometer (VSM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive spectrometer of X-ray (EDX), and X-ray photoelectron spectroscopy (XPS), the samples obtained by co-precipitation and then by further calcination have been analyzed. The experimental results show that the precursor synthesized by co-precipitation is the composite of both amorphous FeOOH and Ni(OH)2, but has no amorphous NiFe2O4. The results of both EDX and XPS revealed that the FeOOH species is wrapped up by Ni(OH)2 species. In the calcination process, the amorphous composite is dehydrated and transformed gradually into crystalline NiFe2O4 nanoparticles, with the metal ions diffusing. The reaction is different from the one used to prepare other ferrite (e.g., CoFe2O4, MnFe2O4, Fe3O4, etc.) nanoparticles directly by co-precipitation. With increasing calcination temperature, the NiFe2O4 grains grow and the magnetization is enhanced. 相似文献
15.
采用低温固相反应法制备了晶粒尺寸在8-47 nm之间的NiFe2O4纳米颗粒系列样品,用X射线衍射仪(XRD)、高分辨中子粉末衍射谱仪、振动样品磁强计和超导量子干涉仪等对样品的晶体结构、宏观磁性和纳米颗粒的表面各向异性进行了分析研究.XRD和中子衍射测量结果显示纳米颗粒的晶格常数略高于块体材料,样品的氧参量表明纳米颗粒的晶格畸变程度没有块体材料严重.相对块体材料,纳米颗粒具有较小的磁化强度、较大的矫顽力和各向异性能密度.纳米颗粒从多畴转变为单畴的临界尺寸约为40 nm,超顺磁性临界尺寸约为16 nm. 相似文献
16.
采用溶胶 凝胶法制备NiFe2 O4 纳米粉末 ,并经不同温度热处理 .测定了制备过程中各阶段的红外吸收光谱和不同温度处理样品的红外漫反射光谱 .结果表明 ,红外吸收光谱较好地反映了溶胶 凝胶法制备NiFe2 O4 纳米粉末过程中结构的变化 ,为确定热处理温度提供了实验依据 ,彻底消除有机物 ,热处理需在 40 0℃以上 ;红外漫反射谱可以较好地反映粉末的尺寸效应和形态效应 ,粉末粒径越小 ,漫反射函数 (K M)值越大 ;当粒径达到一定尺寸时 ,红外漫反射的尺寸效应消失 相似文献
17.
用微乳液化学剪裁方法制备了明胶包裹的复合纳米NiFe2 O4 。将明胶和亚铁盐以及镍盐制成凝胶 ,使该凝胶状反应物在微乳液的胶束中剪裁成微粒 ,再被还原 化合 成核长大。生成的微粒处于明胶蛋白分子的包裹之中。用XRD ,TEM ,EDS ,IR等测试表明 :微粒为明胶包裹球形纳米微粒。微球的平均粒径为 10~10 0nm ,单个微粒的粒径 3 3~ 4 6nm。每个复合微球中约有 3~ 2 2个NiFe2 O4 粒子。NiFe2 O4 复合微粉的比饱和磁化强度σs=36 31× 10 3 4π(A·m- 1 ·g- 1 ) ,矫顽力Hc=6 75 0A·m- 1 ,剩磁Br=4 39× 10 3 4π(A·m- 1 ·g- 1 )。 相似文献
18.
在氧化铝模板的纳米孔洞中, 用电化学的方法沉积铁镍合金纳米线,经过550℃30h氧化处理, 成功制备出 NiFe2O4纳米线阵列. 分别用扫描电子显微镜 (SEM) 、透射电子显微镜 (TEM) 、x射线衍射仪 (XRD) 和振动样品磁场计 (VSM) 对样品的形貌、晶体结构和磁学性质进行了表征测试. SEM和TEM观察结果显示氧化铝模板的孔洞分布均匀,孔心距约为110nm; 纳米线的直径约为70nm. XRD显示纳米线阵列的物相结构为NiFe2O4; VSM测试结果表明,NiFe2O4纳米线阵列膜的易磁化方向垂直于膜面. 当垂直磁化时磁滞回线的矩形比约为0.5,矫顽力为41×103A/m,比氧化处理前的铁镍合金纳米线阵列都有显著提高. 相似文献
19.
Oxide spinels, in particular those containing iron, often exhibit technically important electrical- and magnetic-properties. We report here on X-ray powder diffraction and Mössbauer studies of nanostructured NiFe2O4 particles prepared by high-energy ball milling from bulk NiFe2O4, which is an inverse spinel. The Mössbauer spectra were recorded in situ at different temperatures in the range of 300–850 K. The Mössbauer spectra of the milled samples show a broad distribution of magnetic hyperfine fields together with a paramagnetic state at room temperature. Initially, at 700 K the spectrum is mainly paramagnetic, but during the process of annealing, magnetic sextets emerge. The treatment results in a significant change in the B/A area ratio of the ferrite. The Neél temperature of the samples is estimated from the B(T) relation to be in the range of 800–850 K. 相似文献