首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyamides are very important polymers that find applications from commodities up to the automotive and biomedical sectors, and their impact is continuously growing. The synthesis of structurally significant, chiral, and sustainable polyamides is described via a new, convenient, and solvent‐free anionic polymerization of a biobased ε‐lactam, which is obtained from the renewable terpenoid ketone l ‐menthone in a one‐step synthesis. These polyamides are shown to have outstanding structural and thermal properties, which are thus introduced via the structure and chirality of the natural lactam monomer and which are discussed and compared with those of petroleum‐based, established, and commercial polyamide Nylon‐6. X‐ray data reveal a remarkable degree of crystallinity in these green polymers and emphasize the impact of their structural features on the resulting properties.

  相似文献   


2.
A photocleavable terpolymer hydrogel cross‐linked with o‐nitrobenzyl derivative cross‐linker is shown to be capable of self‐shaping without losing its physical integrity and robustness due to spontaneous asymmetric swelling of network caused by UV‐light‐induced gradient cleavage of chemical cross‐linkages. The continuum model and finite element method are used to elucidate the curling mechanism underlying. Remarkably, based on the self‐changing principle, the photosensitive hydrogels can be developed as photoprinting soft and wet platforms onto which specific 3D characters and images are faithfully duplicated in macro/microscale without contact by UV light irradiation under the cover of customized photomasks. Importantly, a quick response (QR) code is accurately printed on the photoactive hydrogel for the first time. Scanning QR code with a smartphone can quickly connect to a web page. This photoactive hydrogel is promising to be a new printing or recording material.

  相似文献   


3.
The present review focuses on the recent progress made in thin film orientation of semi‐conducting polymers with particular emphasis on methods using epitaxy and shear forces. The main results reported in this review deal with regioregular poly(3‐alkylthiophene)s and poly(dialkylfluorenes). Correlations existing between processing conditions, macromolecular parameters and the resulting structures formed in thin films are underlined. It is shown that epitaxial orientation of semi‐conducting polymers can generate a large palette of semi‐crystalline and nanostructured morphologies by a subtle choice of the orienting substrates and growth conditions.

  相似文献   


4.
A facile and versatile approach to constructing colorless surface coatings based on green tea polyphenols is reported, which can further act as a photoinitiating layer to initiate radical polymerization. These colorless green tea polyphenol coatings are capable of successfully photografting polymer brushes, and the resulting polymer brush patterns show spatial shape adjustability by masked UV irradiation. Both surface modifications and photografted polymer brushes do not alter the original color of the substrates. This method could be promising for the development of surface modifications.

  相似文献   


5.
Well‐defined poly[pentafluorophenyl (meth)acrylate] (PPFP(M)A) homopolymers are prepared by RAFT radical polymerization mediated by a novel chain transfer agent containing two cholesteryl groups in the R‐group fragment. Subsequent reaction with a series of small‐molecule amines in the presence of an appropriate Michael acceptor for ω‐group end‐capping yields a library of novel bischolesteryl functional hydrophilic homopolymers. Two examples of statistical copolymers are also prepared including a biologically relevant sugar derivative. Specific examples of these homopolymers are examined with respect to their ability to self assemble in aqueous media—a process driven entirely by the cholesteryl end groups. In all instances evaluated, and under the preparation conditions examined, the homopolymers aggregate clearly forming polymersomes spanning an impressive size range.

  相似文献   


6.
In this article, a synthetic concept for the preparation of polyamides with functional side groups is described. First, the synthesis of a bis(thiolactone) monomer is shown in a concise three‐step route from itaconic acid and DL‐homocysteine thiolactone. The reactivity of the resulting bis(thiolactone) toward hexyl amine is examined. Next, the bis(thiolactone) is reacted as A,A‐type monomer with different B,B‐type comonomers (1,12‐diaminododecane and 1,3‐bis(aminopropyl)tetramethyldisiloxane). Ring opening of the thiolactones by the diamines leads to polyamides with pendant thiol groups. Using two diamines in different ratios, the properties of the resulting polyamides are tuned (thermal properties are determined) and different molecular weights are acquired. Subsequently, the thiol groups are reacted with methyl acrylate via Michael addition to functionalize the polyamides. Functionalization of thiol‐functional polyamides using poly(ethylene glycol) monomethyl ether (mPEG) acrylates ( = 480 and 1700 g mol−1) results in water‐soluble amphiphilic poly­amides with molecular weights higher than 10 000 g mol−1.

  相似文献   


7.
To obtain materials useful for the biomedical field, toxic catalysts should be removed from the synthetic route of polymerization reactions and of their precursors. Lipase‐catalyzed ring‐opening polymerization and the synthesis of cyclic precursors can be performed with the same catalyst under different conditions. Here, we highlight the use of lipases as catalysts and optimization of their performance for both ring‐closing and ring‐opening polymerization, via varying parameters such as ring size, concentration, substrate molar ratio, temperature, and solvent. While the conditions for ring‐closing reactions and ring‐opening polymerizations of small molecules, such as ε‐caprolactone, have been extensively explored using Candida antarctica lipase B (CALB), the optimization of macrocyclization, especially for more bulky substrates is surveyed here. Finally, recent methods and polymer architectures are summarized with an emphasis on new procedures for more sustainable chemistry, such as the use of ionic liquids as solvents and recycling of polyesters by enzymatic pathways.

  相似文献   


8.
Multi‐micelle aggregation (MMA) mechanism is widely acknowledged to explicate large spherical micelles self‐assembly, but the process of MMA during self‐assembly is hard to observe. Herein, a novel kind of strong, regular microspheres fabricated from self‐assembly of amphiphilic anthracene‐functionalized β‐cyclodextrin (CD‐AN) via Cu(I)‐catalyzed azide‐alkyne click reactions is reported. The obtained CD‐AN amphiphiles can self‐assemble in water from primary core–shell micelles to secondary aggregates with the diameter changing from several tens nm to around 600–700 nm via MMA process according to the images of scanning electron microscopy, transmission electron microscopy, and atomic force microscopy as well as the dynamic light scattering measurements, followed by further crosslinking through photo‐dimerization of anthracene. What merits special attention is that such photo‐crosslinked self‐assemblies are able to disaggregate reversibly into primary nanoparticles when changing the solution conditions, which is benefited from the designed regular structure of CD‐AN and the rigid ranging of anthracene during assembly, thus confirming the process of MMA.

  相似文献   


9.
Polydopamine‐based coatings are fabricated via an electric field‐accelerating and ‐directing codeposition process of polydopamine with charged polymers such as polycations, polyanions, and polyzwitterions. The coatings are uniform and smooth on various substrates, especially on those adhesion‐resistant materials including poly(vinylidene fluoride) and poly(tetrafluoroethylene) membranes. Moreover, this electric field‐directed deposition method can be applied to facilely prepare Janus membranes with asymmetric chemistry and wettability.

  相似文献   


10.
A thiofunctional thiazolidine is introduced as a new low‐molar‐mass building block for the introduction of cysteine residues via a thiol‐ene reaction. Allyl‐functional polyglycidol (PG) is used as a model polymer to demonstrate polymer‐analogue functionalization through reaction with the unsaturated side‐chains. A modified trinitrobenzenesulfonic acid (TNBSA) assay is used for the redox‐insensitive quantification and a precise final cysteine content can be predetermined at the polymerization stage. Native chemical ligation at cysteine‐functional PG is performed as a model reaction for a chemoselective peptide modification of this polymer. The three‐step synthesis of the thiofunctional thiazolidine reactant, together with the standard thiol‐ene coupling and the robust quantification assay, broadens the toolbox for thiol‐ene chemistry and offers a generic and straightforward approach to cysteine‐functional materials.

  相似文献   


11.
Tuning the chain‐end functionality of a short‐chain cationic homopolymer, owing to the nature of the initiator used in the atom transfer radical polymerization (ATRP) polymerization step, can be used to mediate the formation of a gel of this poly(electrolyte) in water. While a neutral end group gives a solution of low viscosity, a highly homogeneous gel is obtained with a phosphonate anionic moiety, as characterized by rheometry and diffusion nuclear magnetic resonance (NMR). This novel type of supramolecular control over poly(electrolytic) gel formation could find potential use in a variety of applications in the field of electro‐active materials.

  相似文献   


12.
(1‐Adamantyl)methyl glycidyl ether (AdaGE) is introduced as a versatile monomer for oxyanionic polymerization, enabling controlled incorporation of adamantyl moieties in aliphatic polyethers. Via copolymerization with ethoxyethyl glycidyl ether (EEGE) and subsequent cleavage of the acetal protection groups of EEGE, hydrophilic linear polyglycerols with an adjustable amount of pendant adamantyl moieties are obtained. The adamantyl unit permits control over thermal properties and solubility profile of these polymers (LCST). Additionally, AdaGE is utilized as a termination agent in carbanionic polymerization, affording adamantyl‐terminated polymers. Using these structures as macroinitiators for the polymerization of ethylene oxide affords amphiphilic, in‐chain adamantyl‐functionalized block copolymers.

  相似文献   


13.
Ferrocene‐based polymers have drawn much attention in the past decades due to their unique properties and promising applications. However, the synthesis of hyperbranched polymers is still a great challenge. Here, two ferrocene‐based hyperbranched polytriazoles with high molecular weights are facilely prepared by the click polymerization reactions of ferrocene‐containing diazides ( 1 ) and tris(4‐ethynylphenyl)amine ( 2 ) using Cu(PPh3)3Br as catalyst in dimethylformamide at 60 °C for 5 and 9 h in satisfactory yields of 54.0% and 52.3%. The resulting polytriazoles are soluble in common organic solvents and thermally stable, with 5% weight loss temperatures up to 307 °C. They can be used as precursors to produce nanostructured ceramics with good magnetizability by pyrolysis at elevated temperature.

  相似文献   


14.
Polymer‐protein conjugates are biohybrid macromolecules derived from covalently connecting synthetic polymers with polypeptides. The resulting materials combine the properties of both worlds: chemists can engineer polymers to stabilize proteins, to add functionality, or to enhance activity; whereas biochemists can exploit the specificity and complexity that Nature has bestowed upon its macromolecules. This has led to a wealth of applications, particularly within the realm of biomedicine. Polymer‐protein conjugation has expanded to include scaffolds for drug delivery, tissue engineering, and microbial inhibitors. This feature article reflects upon recent developments in the field and discusses the applications of these hybrids from a biomaterials standpoint.

  相似文献   


15.
Rattle‐like polymer capsules with multicores in one shell are facilely fabricated by oil‐in‐water Pickering emulsion polymerization for the first time. The oil phase contains hydrophobic silica nanoparticles dispersed in polymerizable monomer, styrene, and unpolymerizable solvent, hexadecane. The multicore rattle‐like capsules are facilely produced after the polymerization of monomers in the oil droplets. The key point of this one‐pot method lies in the nucleation of hydrophobic silica and the phase separation between the resulting polystyrene and hexadecane. The influences of the contents of silica, hexadecane, cross‐linker, and stabilizer on the structure and morphology of rattle‐like capsules are systematically investigated. Moreover, functionalization of the rattle‐like capsules can be developed easily by varying hydrophobic nucleation nanoparticles in the oil phase. This work opens up a new route to fabricate multilevel capsules or spheres.

  相似文献   


16.
Polyurethane (PU) monomer mixtures containing commercially available o‐nitrobenzyl‐based photocleavable monomers have been formulated and tested as low‐cost positive tone photoresists. The photolysis reaction is studied by UV spectroscopy. Well‐defined micropatterns on 2 μm thick photodegradable PU films are obtained using 365 nm light exposure. This strategy is also extended to improved formulations based on synthesized o‐nitrobiphenylpropyl derivatives with enhanced photochemical properties for single photon excitation and high two‐photon absorption cross‐sections. Improved pattern resolution in 2D and the capability of 3D resolution using a scanning laser at 780 nm is demonstrated. This work demonstrates the potential of PUs as readily available, versatile, and easy‐to‐use photoresist materials for low‐cost lithography applications.

  相似文献   


17.
Cyclic multiblock polymers with high‐order blocks are synthesized via the combination of single‐electron transfer living radical polymerization (SET‐LRP) and copper‐catalyzed azide‐alkyne cycloaddition (CuAAC). The linear α,ω‐telechelic multiblock copolymer is prepared via SET‐LRP by sequential addition of different monomers. The SET‐LRP approach allows well control of the block length and sequence as A‐B‐C‐D‐E, etc. The CuAAC is then performed to intramolecularly couple the azide and alkyne end groups of the linear copolymer and produce the corresponding cyclic copolymer. The block sequence and the cyclic topology of the resultant cyclic copolymer are confirmed by the characterization of 1H nuclear magnetic resonance spectroscopy, gel permeation chromatography, Fourier transform infrared spectroscopy, and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry.

  相似文献   


18.
An extrinsic self‐healing coating system containing tetraphenylethylene (TPE) in microcapsules was monitored by measuring aggregation‐induced emission (AIE). The core healing agent comprised of methacryloxypropyl‐terminated polydimethylsiloxane, styrene, benzoin isobutyl ether, and TPE was encapsulated in a urea‐formaldehyde shell. The photoluminescence of the healing agent in the microcapsules was measured that the blue emission intensity dramatically increased and the storage modulus also increased up to 105 Pa after the photocuring. These results suggested that this formulation might be useful as a self‐healing material and as an indicator of the self‐healing process due to the dramatic change in fluorescence during photocuring. To examine the ability of the healing agent to repair damage to a coating, a self‐healing coating containing embedded microcapsules was scribed with a razor. As the healing process proceeded, blue light fluorescence emission was observed at the scribed regions. This observation suggested that self‐healing could be monitored using the AIE fluorescence.

  相似文献   


19.
Hypoxia plays a critical role in the development and wound healing process, as well as a number of pathological conditions. Here, dextran‐based hypoxia‐inducible (Dex‐HI) hydrogels formed with in situ oxygen consumption via a laccase−medicated reaction are reported. Oxygen levels and gradients were accurately predicted by mathematical simulation. It is demonstrated that Dex‐HI hydrogels provide prolonged hypoxic conditions up to 12 h. The Dex‐HI hydrogel offers an innovative approach to delineate not only the mechanism by which hypoxia regulates cellular responses, but may facilitate the discovery of new pathways involved in the generation of hypoxic and oxygen gradient environments.

  相似文献   


20.
A simple strategy is provided to construct a novel pH‐ and sugar‐induced shape memory hydrogel based on dynamic phenylboronic acid (PBA)–diol interactions formed by PBA‐modified sodium alginate (Alg‐PBA) and poly(vinyl alcohol) (PVA). The dynamic PBA–diol ester bonds serve as temporary cross‐links and stabilize the deformed shape of the hydrogel. The disassociation of the PBA–diol ester bonds is explored in acidic conditions and aqueous solutions of glucose and fructose, which endow the hydrogel with shape memory performances.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号