首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Efficiency droop, i.e. the loss of efficiency at high operating current, afflicts nitride‐based light‐emitting diodes (LEDs). The droop phenomenon is currently the subject of intense research, as it retards the advancement of solid‐state lighting which is just starting to supplant fluorescent as well as incandescent lighting. Although the technical community does not yet have consented to a single cause of droop, this article provides a summary of the present state of droop research, reviews currently discussed droop mechanisms, and presents a recently developed theoretical model for the efficiency droop. In the theoretical model, carrier leakage out of the active region caused by the asymmetry of the pn junction, specifically the disparity between electron and hole concentrations and mobilities, is discussed in detail. The model is in agreement with the droop's key behaviors not only for GaInN LEDs but also for AlGaInP LEDs.  相似文献   

2.
Solid‐state lighting (SSL) is now the most efficient source of high color quality white light ever created. Nevertheless, the blue InGaN light‐emitting diodes (LEDs) that are the light engine of SSL still have significant performance limitations. Foremost among these is the decrease in efficiency at high input current densities widely known as “efficiency droop.” Efficiency droop limits input power densities, contrary to the desire to produce more photons per unit LED chip area and to make SSL more affordable. Pending a solution to efficiency droop, an alternative device could be a blue laser diode (LD). LDs, operated in stimulated emission, can have high efficiencies at much higher input power densities than LEDs can. In this article, LEDs and LDs for future SSL are explored by comparing: their current state‐of‐the‐art input‐power‐density‐dependent power‐conversion efficiencies; potential improvements both in their peak power‐conversion efficiencies and in the input power densities at which those efficiencies peak; and their economics for practical SSL.  相似文献   

3.
发光二极管材料与器件的历史、现状和展望   总被引:23,自引:0,他引:23  
方志烈 《物理》2003,32(5):295-301
文章介绍了发光二极管材料和器件的研究、开发的历史,概述了发光二极管技术的发展现状和进展.通过与其他类型光源的比较,向读者展示了发光二极管未来的重要地位和光明前景.发光二极管的最近的成就是实现了有色光方面的成功应用.高功率白色发光二极管已开始应用于便携式和特殊照明.而在通用的照明领域要成功地应用发光二极管,则需要通过性能和价格方面的继续突破来实现.  相似文献   

4.
功率型发光二极管的研究与应用进展   总被引:3,自引:0,他引:3  
张万生  布良基 《物理》2003,32(5):309-314
文章首先对功率型发光二极管的起源和发展作了回顾和简要的叙述.然后以固体光源照明为目标,给出了几种可见光功率发光二极管芯片和封装的典型结构,并且对它们各自的特点进行了比较.最后指出了功率发光二极管作为固体光源取代真空灯泡用于照明在未来的五至十年内将成为现实.  相似文献   

5.
Wavelength‐tunable light‐emitting diodes (LEDs) of GaxZn1–xO nanowire arrays are demonstrated by a simple modified chemical vapor deposition heteroepitaxial growth on p‐GaN substrate. As a gallium atom has similar electronegativity and ion radius to a zinc atom, high‐level Ga‐doped GaxZn1–xO nanowire arrays have been fabricated. As the x value gradually increases from 0 to 0.66, the near‐band‐edge emission peak of GaxZn1–xO nanowires shows a significant shift from 378 nm (3.28 eV) to 418 nm (2.96 eV) in room‐temperature photoluminescence (PL) measurement. Importantly, the electroluminescence (EL) emission of GaxZn1–xO nanowire arrays LED continuously shifts with a wider range (∼100 nm), from the ultraviolet (382 nm) to the visible (480 nm) spectral region. The presented work demonstrates the possibility of bandgap engineering of low‐dimensional ZnO nanowires by gallium doping and the potential application for wavelength‐tunable LEDs.  相似文献   

6.
Flexible GaN‐based light‐emitting diodes (LEDs) on polyethylene terephthalate (PET) substrates are demonstrated. The process uses commercial LEDs on patterned sapphire substrates, laser lift‐off (LLO), wet etching for additional surface roughening, and mounting of the freestanding LED on a PET substrate. Electrical and optical properties from the free‐standing LLO‐LEDs mounted on the flexible PET substrates were characterized. The process is scalable to large wafer diameters. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Using the recently suggested method of processing the data on external quantum efficiency as a function of output optical power, we have estimated the dependence of light extraction efficiency of high‐power light‐emitting diodes (LEDs) on their emission wavelength varied between 425 nm and 540 nm. The extraction efficiency is found to increase with the wavelength from ~80% to ~85% in this spectral range and to correlate with the wavelength dependence of reflectivity of the large‐area p‐electrode being the essential unit of the LED chip design. The correlation found identifies the incomplete reflection of emitted light from the electrode as the major mechanism eventually controlling the spectral dependence of the efficiency of light extraction from the LEDs.

  相似文献   


8.
An effective method is presented for enhancing the outcoupling efficiency of translucent/bi‐directional organic light‐emitting diodes (TL/BD‐OLEDs) with a bottom indium tin oxide (ITO) anode and a top cathode comprised of a thin Ag layer covered with an organic capping layer. Upon insertion of a nanoparticle (NP)‐based scattering layer (NPSL) between the substrate and the ITO anode, the TL/BD‐OLEDs exhibit significantly enhanced external quantum efficiency (EQE) in both emission directions. Furthermore, the NPSL improves the color stability of the TL/BD‐OLEDs over a wide range of viewing angles. Simulations based on geometrical and statistical optics are performed to elucidate the mechanism by which the efficiency is enhanced and to establish strategies for further optimization. Simulations performed on the scattering layers with varying NP volume percentage reveal that the bottom‐side emission is governed by competition between waveguide‐mode extraction and backward scattering by NPs in the film, while the top‐side emission is largely dominated by the latter. Optimized bi‐directional OLEDs achieve a 1.64‐fold enhanced EQE compared to reference devices without NPSL.  相似文献   

9.
The paper considers surface recombination at the free active region surface as the mechanism of carrier losses which has not yet been discussed with regard to III‐nitride LEDs despite of its evident importance for AlGaInP‐based light emitters. Using advanced thin‐film and triangular volumetric chip designs reported in literature as prototypes, we have demonstrated by simulation a noticeable impact of surface recombination on the wall‐plug efficiency of InGaN‐based LEDs. Various types of LEDs whose efficiency may be especially affected by surface recombination are discussed. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

10.
Organic light‐emitting diodes (OLEDs) are discussed for electro‐optical integrated devices that are used for optical signal transmission. Organic optical devices including polymeric optical fibers are used for optical communication applications to realize polymeric electro‐optical integrated devices. The OLEDs were fabricated by vacuum process, i.e. the organic molecular beam deposition (OMBD) technique or a solution process on a polymeric or a glass substrate, for comparison. Optical signals faster than 100 MHz have been created by applying pulsed voltage directly to the OLED utilizing rubrene doped in 8‐hydoxyquinolinum aluminum (Alq3), as an emissive layer. OLEDs fabricated by solution process utilizing rubrene doped in carrier‐transporting materials have also discussed. OLEDs utilizing polymeric materials by solution process are also fabricated and discussed. Moving‐picture signals are transmitted utilizing both vacuum‐ and solution‐processed OLEDs, respectively.  相似文献   

11.
This article will give an overview of the current state‐of‐the‐art of OLETs from the point of view of their photonic characteristics. In particular, the different device structures realized, the materials used and the strategies implemented to integrate optical resonators and waveguiding structures into light‐emitting field‐effect transistors will be reviewed and the main findings discussed. (Picture: Courtesy of E. T. C. srl)  相似文献   

12.
We have fabricated multi‐peak and chromaticity‐stable top‐emitting white organic light‐emitting diodes (TEWOLEDs) using single blue emitter. Besides the intrinsic emission of blue emitter, the additional emission can be well realized by simply adjusting the thickness of hole transporting layer (HTL), thus modifying the optical cavity length to obtain different resonant wavelengths. The detailed variation process for multi‐peak spectra with the increase of HTL thickness is studied, which provides a guidance for the design of microcavity TEWOLEDs.

  相似文献   


13.
In this Letter, a GaN‐based high‐power (HP) single‐chip (SC) large‐area LED with parallel and series network structure is fabricated. The optical characteristics of the HP‐SC LED is investigated. Driven at 600 mA, the optical output power of the HP‐SC LED chip is measured to be 9.7 W, corresponding to an EQE of 26.4%, which is 19.6% lower than that of the standard small LED cell due to both the lateral light‐extraction efficiency degradation and the self‐heating effect. A statistical analysis was carried out to investigate the yield of the fabricated HP‐SC LEDs, the experimental results agree with the theoretical calculations very well, validating the feasibility of this design on the production yield for the large‐area LEDs.

  相似文献   


14.
Bottom emitting organic light emitting diodes (OLEDs) can suffer from lower external quantum efficiencies (EQE) due to inefficient out‐coupling of the generated light. Herein, it is demonstrated that the current efficiency and EQE of red, yellow, and blue fluorescent single layer polymer OLEDs is significantly enhanced when a MoOx(5 nm)/Ag(10 nm)/MoOx(40 nm) stack is used as the transparent anode in a top emitting OLED structure. A maximum current efficiency and EQE of 21.2 cd/A and 6.7%, respectively, was achieved for a yellow OLED, while a blue OLED achieved a maximum of 16.5 cd/A and 10.1%, respectively. The increase in light out‐coupling from the top‐emitting OLEDs led to increase in efficiency by a factor of up to 2.2 relative to the optimised bottom emitting devices, which is the best out‐coupling reported using solution processed polymers in a simple architecture and a significant step forward for their use in large area lighting and displays.  相似文献   

15.
Organic device with structure of indium tin oxide (ITO)/1,3,5-tris-(3-methylphenylphenylamino)triphenylamine (m-MTDATA)/2-tert-butyl-9,10-di-beta-naphthylanthracene (TBADN)/2,9-dimethyl-4,7-diphenyl-1,10-phenan-throline (BCP)/LiF/Al, was fabricated, which show high efficient white electroluminescence (EL) or photovoltaic (PV) properties when it was driven by direct current (DC) bias or illuminated by ultraviolet (UV) light. Under a DC bias, the device shows efficient white EL emission. A maximum luminous efficiency of 1.1 lm/W was obtained at 8 V, which corresponds the Commission International de L’Eclairage coordinates (CIE) of (x = 0.298, y = 0.365). When the bias was increased to 12 V, the device shows bright white emission with the maximum brightness of 4300 cd/m2, corresponding CIE coordinates of (x = 0.262, y = 0.280). When the diode was irradiated by a 365 nm UV-light (4 mW/cm2), the open-circuit voltage (Voc) of 1.2 V, short-circuit (Isc) of 0.065 mA/cm2, fill factor (FF) of 0.24 and power conversion efficiency of 0.47% have been determined, respectively. The generation mechanisms of white light and PV of the bi-functional diode were discussed as well.  相似文献   

16.
In this paper, the green quantum dots capped with the ligand, tris(mercaptomethyl)nonane (TMMN), are fabricated as the light‐emitting layer for efficient and bright light‐emitting diodes. These TMMN‐capped quantum dots exhibit well‐preserved photoluminescence properties with quantum yields of ∼90% after ligand exchange. The light‐emitting diodes based on TMMN‐capped quantum dots are reported with a maximum external quantum efficiency of 16.5% corresponding to a power efficiency and current efficiency of 57.6 lm W–1 and 70.1 cd A–1, respectively. The devices exhibit high color stability that is not markedly affected by the increase of applied voltage, thus leading to a high color reproducibility. Most importantly, the devices exhibit high environmental stability. For the highest luminance devices (with emitting layer thickness of 25 nm) and the highest power efficiency devices (with emitting layer thickness of 38 nm), the lifetimes are > 480 000 h and > 110 000 h, respectively.

  相似文献   


17.
发光二极管测试技术和标准   总被引:12,自引:0,他引:12  
鲍超 《物理》2003,32(5):319-324
文章从发光二极管的空间能量分布和光谱能量分布两个方面叙述了光和辐射参数测试的原理和方法.讨论了辐射通量和光通量的基本概念、测量方法及相互之间的关系.在实际应用中,发光二极管的发光强度和辐射功率及他们的空间分布是常需要测量的参数.文章从基于人类视觉特性的色度学原理出发,讨论了发光二极管的光谱能量分布和重要的色度学参数以及相应的测试标准问题.  相似文献   

18.
以Gd2O3,MoO3,Eu2O3为原料,采用传统的高温固相反应方法制备了一种新的白光LED用红色荧光粉材料α相Gd2(MoO4)3∶Eu。利用XRD,SEM,激发和发射光谱对其进行了研究。分析了助熔剂和激活剂对样品的晶体结构,表面形貌和发光性能的影响。结果表明这种荧光粉可以被近紫外光(395nm)和蓝光(465nm)有效激发,发射峰值位于613nm(Eu^3+离子的5^D0→7^F2跃迁)的红光,激发波长与目前广泛使用的蓝光和紫外光LED芯片相符合。因此,三价Eu离子激活的α相Gd2(MoO4)3是一种可能应用在白光LED上的红色荧光粉材料。  相似文献   

19.
The effects of H‐plasma treatment on the electroluminescence (EL) of ZnO‐based light‐emitting diodes have been investigated systematically. After H‐plasma treatment, the EL intensity of the n‐ZnO/AlN/p‐GaN device is observed to be three times stronger than its as‐grown counterpart under the same injection current, and the threshold voltage of the device is significantly reduced simultaneously. The increases in electron concentration and mobility of the ZnO layer resulting from the incorporation of hydrogen atoms into ZnO are considered to be responsible for the improved performance of the ZnO‐based light‐emitting diodes. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
用于POF的高性能共振腔发光二极管   总被引:1,自引:0,他引:1       下载免费PDF全文
提出用AlGaAs材料为n型下DBR,AlGaInP材料为p型上DBR,GaInP/AlGaInP多量子阱为有源区来制备650nm波长的共振腔发光二极管(RCLED).用传输矩阵法对器件的结构进行了理论设计,并制备了RCLED和普通LED两种结构.测试结果表明,RCLED有更高的发光效率,是普通LED的近1.3倍,当注入电流从3mA增加到30mA时,RCLED的峰值波长只变化了1nm,而普通LED的波长则变化了7nm,且RCLED的光谱半宽窄,远场发散角小. 关键词: 发光二极管 共振腔 金属有机物化学气相淀积  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号