首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
冯秋燕  姚佰承  周金浩  夏汉定  范孟秋  张黎  吴宇  饶云江 《物理学报》2015,64(18):184214-184214
基于石墨烯的光学非线性特性和器件研究正在成为新一代微纳光子器件的一个重要方向. 采用峰值功率为kW量级的飞秒脉冲抽运和P型掺杂石墨烯薄膜包裹的微光纤所构成的复合波导结构, 在1550 nm波段成功激发并观察到级联四波混频现象. 实验 结果表明, 这种P型掺杂石墨烯包裹的微光纤复合波导具有非线性系数高、结构紧凑, 可承受高功率和超快响应的特点, 对基于该结构的级联四波混频特性的研究在基于超快光学的多波长光源、光参量放大以及全光再生等领域具有参考价值和应用意义  相似文献   

3.
半导体可饱和吸收镜被动锁模侧面抽运Nd:YAG激光器研究   总被引:2,自引:0,他引:2  
利用半导体可饱和吸收镜(SESAM)锁模技术实现的超快脉冲激光器具有结构简单紧凑、脉冲序列稳定等优势,在许多领域有着重要用途,自问世以来受到国内外的广泛关注.分析了SESAM被动锁模侧面抽运固体激光器的具体要求,进行了不同条件下的SESAM被动锁模侧面抽运Nd:YAG激光器实验.获得了最高平均功率9.5 W,脉冲重复频率71 MHz,单脉冲能量约141 nJ的皮秒激光脉冲.对SESAM被动锁模侧面抽运Nd:YAG激光器进行了实验和理论分析,对实现高功率连续超短脉冲激光器进行了探讨.  相似文献   

4.
With the development of high power ultrafast laser passively mode-locked by a semiconductor saturable absorber mirror (SESAM), the damage threshold and degeneration mechanism of the SESAM become more and more important. One way to reduce the maximum electric field inside the active part of the SESAM is the use of a dielectric coating on the top of the semiconductor structure. With Presnel formula, optical transfer matrix, and optical thin film theory, the electric field distribution and reflectance spectrum can be simulated. We introduce the design principles of SESAM including the dependence of reflectance spectrum on dielectric function of absorber, and investigate the dependences of the electric field distribution, modulation depth, reflectance spectrum, and the relative value of incident light power at the top quantum well of SESAM on the number of SiO2/Ta2O5 layers.  相似文献   

5.
6.
The progress on multi‐wavelength quantum cascade laser arrays in the mid‐infrared is reviewed, which are a powerful, robust and versatile source for next‐generation spectroscopy and stand‐off detection systems. Various approaches for the array elements are discussed, from conventional distributed‐feedback lasers over master‐oscillator power‐amplifier devices to tapered oscillators, and the performances of the different array types are compared. The challenges associated with reliably achieving single‐mode operation at deterministic wavelengths for each laser element in combination with a uniform distribution of high output power across the array are discussed. An overview of the range of applications benefiting from the quantum cascade laser approach is given. The distinct and crucial advantages of arrays over external cavity quantum cascade lasers as tunable single‐mode sources in the mid‐infrared are discussed. Spectroscopy and hyperspectral imaging demonstrations by quantum cascade laser arrays are reviewed.

  相似文献   


7.
曹士英  朱月  柴路  王清月  张志刚 《物理学报》2009,58(9):6269-6272
采用Nd∶Gd0.1Y0.9VO4晶体作为增益介质和Z形腔结构,分析比较了腔内加入自行设计的镀和不镀高反膜的半导体可饱和吸收镜(SESAM)对激光锁模的影响.在腔内加入镀膜SESAM后,激光锁模阈值由1.69W下降为1.45W,并且锁模更稳定.在2W抽运功率下,在1064nm中心波长处获得了双端250mW的连续锁模输出,光光转换效率为12.5%,重复频率为142.25MHz. 关键词: 0.1Y0.9VO4激光器')" href="#">Nd∶Gd0.1Y0.9VO4激光器 半导体可饱和吸收镜 连续锁模  相似文献   

8.
The polarization‐independent enhanced absorption effect of graphene in the near‐infrared range is investigated. This is achieved by placing a graphene square array on top of a dielectric square array backed by a two‐dimensional multilayer grating. Total optical absorption in graphene can be attributed to critical coupling, which is achieved through the combined effect of guided‐mode resonance with the dielectric square array and the photonic band gap with the two‐dimensional multilayer grating. To reveal the physical origin of such a phenomenon, the electromagnetic field distributions for both polarizations are illustrated. The designed graphene absorber exhibits near‐unity polarization‐independent absorption at resonance with an ultra‐narrow spectrum. Moreover, the polarization‐independent absorption can be tuned simply by changing the geometric parameters. The results may have promising potential for the design of graphene‐based optoelectronic devices.  相似文献   

9.
Few‐layer graphene grown by chemical vapor deposition has been studied by Raman and ultrafast laser spectroscopy. A low‐wavenumber Raman peak of ~120 cm−1 and a phonon‐induced oscillation in the kinetic curve of electron–phonon relaxation process have been observed, respectively. The Raman peak is assigned to the low‐wavenumber out‐of‐plane optical mode in the few‐layer graphene. The phonon band shows an asymmetric shape, a consequence of so‐called Breit‐Wigner‐Fano resonance, resulting from the coupling between the low‐wavenumber phonon and electron transitions. The obtained oscillation wavenumber from the kinetic curve is consistent with the detected low‐wavenumber phonon by Raman scattering. The origin of this oscillation is attributed to the generation of coherent phonons and their interactions with photoinduced electrons. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
用可饱和吸收体镜(SESAM)的掺钛蓝宝石激光器能够稳定运转在三种不同的锁模状态,即可饱和吸收体被动锁模、孤子锁模加被动锁模和KLM锁模.分析了三种自锁模的机理和SESAM的作用.对SESAM实现KLM锁模的自启动机制进行了实验观察和讨论.从该激光器的KLM锁模状态,获得了小于18飞秒的锁模脉冲序列. 关键词: 半导体可饱和吸收镜 自锁模 钛宝石激光器  相似文献   

11.
In this work, we fabricated a novel BeZnO based dual‐color UV photodetector through a one‐step electron beam evaporation of asymmetric Ti/Au pair. A dual‐phase BeZnO alloy film with dual bandgap of ∼3.5 eV (∼355 nm) and ∼4.6 eV(∼270 nm) was artfully utilized as active layer to realize dual‐color response. This photodetector shows a noticeable photovoltaic characteristic and can be utilized as an excellent self‐powered device. The device exhibits two cut‐off response wavelengths at ∼275 nm and ∼360 nm under zero bias, which are corresponding to UVA and UVC region, respectively. According to the dynamic response spectra under UV radiation, the device presents excellent stability and reproducibility without external power supply. In addition, the device has an ultrafast response speed, with a rise time of ∼35 μs and a decay time of ∼880 μs. Finally, a physical model based on energy band theory is proposed to demonstrate that the self‐powered behavior is attributed to the asymmetric Schottky barrier heights caused by the hole‐trapping process occurred in electrode/BeZnO interface. To the best of our knowledge, this is the first report on BeZnO based self‐powered UV photodetector. Our findings demonstrate a novel and facile route to realize high performance self‐powered UV photodetectors for multipurposes.  相似文献   

12.
The recent demonstration of rare‐earth‐doped fiber lasers with a continuous‐wave output power approaching the 10‐kW level with diffraction‐limited beam quality proves that fiber lasers constitute a scalable solid‐state laser concept in terms of average power. In order to generate high peak power pulses from a fiber several fundamental limitations have to be overcome. This can be achieved by novel experimental strategies and fiber designs that offer an enormous potential towards ultrafast laser systems combining high average powers (> kW) and high peak power (> GW). In this paper the challenges, achievements and perspectives of ultrashort pulse generation and amplification in fibers are reviewed. This kind of laser system will have a tremendous impact on strong‐field physics experiments, such as the generation of coherent light by high‐harmonic generation. So far, applications in the interesting EUV spectral range suffer from the very low photon count leading to nonrelevant integration times with highly sophisticated detection schemes. High repetition rate high average power fiber lasers can potentially solve this issue. First demonstrations of high repetition‐rate strong‐field physics experiments using novel fiber laser systems will be discussed.  相似文献   

13.
We have experimentally demonstrated a diode-pumped passively mode-locked Nd:CaNb2O6 laser for the first time to our best knowledge. With a semiconductor saturable absorber mirror (SESAM) as a passive mode locker, the laser generated stable mode-locked pulses with pulse duration of 17.3 ps and repetition rate of 88.4 MHz. With a singe-emitter laser diode pumping, the maximum average output power of the mode-locked laser was 0.843 W, with a slope efficiency of 23%. The experimental results show the Nd:CaNb2O6 crystal is a promising laser gain medium for picosecond pulse generation.  相似文献   

14.
Abstract

Lasers have advantages compared to conventional light sources, which include high power, a monochromatic emission profile, stability, and rapid tuning across an atomic line. These advantages have resulted in superior analytical figures of merit and methods of background correction compared to conventional light sources. The most widely used lasers for atomic spectrometry include dye laser systems, optical parametric oscillator systems, and diode lasers. Three principal techniques employ lasers as light sources. Laser‐excited atomic fluorescence spectrometry (LEAFS) involves the use of laser light to excite atoms that emit fluorescence and serves as the analytical signal. Laser‐enhanced ionization (LEI) involves laser excitation of atoms to an excited state energy level at which collisional ionization occurs at a higher rate than from the ground state. Diode laser atomic absorption spectrometry (DLAAS) employs a DL as a source to excite atoms in an atom cell from the ground state to an excited state. The analytical signal is involves the ratio of the incident and transmitted beams. Recent applications of these techniques are discussed, including practical applications, hyphenated techniques employing laser‐induced plasmas, and work to characterize fundamental spectroscopic parameters.  相似文献   

15.
We report, for the first time to our knowledge, a diode-end-pumped passively mode-locked(ML) Nd-doped gadolinium gallium garnet laser based on a chemically reduced graphene oxide(RGO) saturable absorber mirror. The ML laser gives a pulse duration of 15.1 ps under the maximum average output power of 1.44 W, corresponding to a slope efficiency of 21.1%. The single-pulse energy and peak power are 21.6 n J and 1.43 k W, respectively. The results indicate that our RGO saturable absorber has promising prospects for applications in high-power and high-efficiency ultrafast lasers.  相似文献   

16.
王希军 《发光学报》2012,33(12):1342-1346
为了增大皮秒注入种子激光的能量,获得较高的激光放大效率和信噪比,关键是要在保持较高的平均锁模激光功率下实现连续波锁模激光器的低重复频率运转。通过选取五镜折叠激光谐振腔腔型和参数设计,克服了随着腔长增加损耗加大而导致的激光锁模不稳定的困难。分析了较长腔长条件下工作物质和SESAM光斑尺寸的大小和变化,及其对激光器稳定性的影响。由于SESAM饱和工作和稳态条件的能量要求,在激光谐振腔调整过程中,对应臂长的光程互补变化。实验中采取腔长和晶体热控制方式,优化了激光谐振腔的工作参数,实现了脉冲能量10.7 nJ,重复频率56 MHz,平均功率1.2 W的SESAM连续波锁模激光输出。  相似文献   

17.
杨超  顾澄琳  刘洋  王超  李江  李文雪 《物理学报》2018,67(9):94206-094206
近年来,双重复频率锁模激光器在诸如双光梳光谱和异步光学采样等应用领域吸引了广泛关注.基于单一激光腔的双梳系统能大大降低成本,简化系统结构,且性能优异.双重复频率锁模激光器为发展紧凑型和实用型双梳装置开辟了道路.本文报道了一种可用作双光梳光谱系统光源的双重复频率锁模Yb:YAG陶瓷激光器.该激光器基于半导体可饱和吸收镜锁模技术,采用双通道抽运结构,利用新型非水基流延成型制备的Yb:YAG透明陶瓷,在单一的五镜腔中,当吸收抽运光功率为5.6 W时,实现了自启动、稳定运转的双重复频率锁模脉冲Pulse1和Pulse2,其重复频率分别为448.918和448.923 MHz,重复频率差为5 kHz.在吸收抽运功率为7 W时,得到最大的总平均输出功率170 mW,其中Pulse1和Pulse2的功率分别为89和81 mW,相应的光谱宽度分别为1和1.16 nm.性能相似的双重复频率脉冲彼此间保持了良好的相干性,实验结果证明了双通道抽运在双重复频率锁模激光器应用中的可行性,此种新型双重复频率激光器在双光梳光谱和测距等领域具有较好的应用潜力.  相似文献   

18.
Graphene oxide (GO) is an attractive freestanding support that can be decorated with ultrathin organic layers for facile and low‐cost fabrication of novel devices with controllable functional properties and microstructures. Here, it is reported that a hybrid material consisting of an ultrathin iron phthalocyanine (FePc) layer self‐assembled on reduced graphene oxide (rGO) exhibits excellent catalytic activity that is superior to that of commercial Pt/C for an oxygen reduction reaction (ORR). During solution processing, the FePc layer is first self‐organized onto GO sheets and then reduced electrochemically to form an FePc/rGO hybrid electrocatalyst. Kinetics studies reveal that the hybrid architecture affords an ultrafast ORR rate caused by a strongly dominant four‐electron process, and the durability of the catalyst shows significant improvement by forming the hybrid structure. Spectroscopic studies suggest that these advantages are afforded by synergistic effects between FePc and rGO, which are enriched by the hybrid structure and the appropriate reduction step.  相似文献   

19.
Semiconductor saturable absorber mirror (SESAM) devices have become a key component of ultrafast passive mode-locked laser sources. Here we describe in more detail how the key SESAM parameters such as saturation fluence, modulation depth, and nonsaturable losses are measured with a high accuracy. These parameters need to be known and controlled to obtain stable pulse generation for a given laser. A high-precision, wide dynamic range setup is required to measure this nonlinear reflectivity of saturable absorbers. The challenge to measure a low modulation depth and key measures necessary to obtain an accurate calibration are described in detail. The model function for the nonlinear reflectivity is based on a simple two-level travelling wave system. We include spatial beam profiles, nonsaturable losses and higher-order absorption, such as two-photon absorption and other induced absorption. Guidelines to extract the key parameters from the measured data are given. PACS 07.60.Hv; 42.65.Re; 42.70.Nq  相似文献   

20.
With the modern development of infrared laser sources such as broadly tunable quantum cascade lasers and frequency combs, applications of infrared laser spectroscopy are expected to become widespread. Consequently, convenient infrared detectors are needed, having properties such as fast response, high efficiency, and room‐temperature operation. This work investigated conditions to achieve near‐room‐temperature photon‐noise‐limited performance of quantum well infrared photodetectors (QWIPs), in particular the laser power requirement. Both model simulation and experimental verification were carried out. At 300 K, it is shown that the ideal performance can be reached for typical QWIP designs up to a detection wavelength of 10 µm. At 250 K, which is easily reachable with a thermoelectric Peltier cooler, the ideal performance can be reached up to 12 µm. QWIPs are therefore suitable for detection and sensing applications with devices operating up to or near room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号