首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To achieve optoelectronic devices with high resolution and efficiency, there is a pressing need for optical structural units that possess an ultrasmall footprint yet exhibit strong controllability in both the frequency and spatial domains. For dielectric nanoparticles, the overlap of electric and magnetic dipole moments can scatter light completely forward or backward, which is called Kerker theory. This effect can expand to any multipoles and any directions, re-named as generalized Kerker effect, and realize controllable light manipulation at full space and full spectrum using well-designed dielectric structures. However, the complex situations of multipole couplings make it difficult to achieve structural design. Here, generative artificial intelligence (AI) is utilized to facilitate multi-objective-oriented structural design, wherein the study leverages the concept of “combined spectra” that consider both spectra and direction ratios as labels. The proposed generative adversarial network (GAN) is named as DDGAN (double-discriminator GAN) that discriminates both images and spectral labels. Using trained networks, the simultaneous design for scattering color and directivities, RGB color routers, as well as narrowband light routers is achieved. Notably, all generated structures possess a footprint <600 × 600 nm indicating their potential applications in optoelectronic devices with ultrahigh resolution.  相似文献   

2.
The interference of optically induced electric and magnetic resonances in high-refractive-index dielectric nanoparticles provides a new approach to control and shape the scattering patterns of light in the field of nanophotonics. In this Letter, we spectrally tune the electric and magnetic resonances by varying the geometry of a single isolated lead telluride(Pb Te) dielectric nanocube. Then, we overlap the electric dipole resonance and magnetic dipole resonance to suppress backward scattering and enhance forward scattering in the resonance region.Furthermore, a broadband unidirectional scattering is achieved by structuring the dielectric nanocuboids as a trimer antenna.  相似文献   

3.
郭艳芳  孔凡敏  李康 《光学技术》2012,38(3):317-322
采用离散偶极子近似(DDA)方法,研究了单体银纳米粒子和银纳米粒子阵列的光谱特性。研究结果发现,单体银纳米粒子的表面等离子体共振消光峰的位置随着周围介质折射率和粒子尺寸的增大逐渐红移,并且消光光谱的峰宽也越来越大。当银纳米粒子正方阵列的周期接近单体的共振波长时,阵列的消光光谱中会出现尖锐的共振峰,改变粒子尺寸的大小可以发现消光光谱中共振峰的峰值和位置有大幅度地改变,通过改变阵列在平行和垂直于入射光偏振方向上的周期,可以调节二维长方阵列共振峰的峰宽和峰位。该研究为纳米粒子在光学显微镜、生物传感元件、数据存储等领域中的应用提供有效地理论参考。  相似文献   

4.
A theory of anisotropic optical local-field effects caused by resonantly polarizable small particles in multilayer polarizable media is developed. Considered is the model of a rectangular lattice of ellipsoidal nanoparticles with taking account of “image forces” at an interface in a layered medium. The lattice sums for anisotropic dipolar interactions are found using the Green’s function method in the quasi-point dipole approximation, and the effective polarizabilities of particles in a layer located near an interface are calculated self-consistently. The manifestation of an anisotropic local field of nanoparticles in optical radiation and propagation of evanescent waves responsible for optical near-field effects is investigated. Applications of the obtained results in the polar magneto-optical Kerr effect and reflectance anisotropy spectroscopy in propagating the polarized light along the normal to layers are considered. The resonant features in the spectra due to enhancement of the optical effects under excitation of surface (local) plasmons in nanoparticles of a noble metal are studied.  相似文献   

5.
丁东  杨仕娥  陈永生  郜小勇  谷锦华  卢景霄 《物理学报》2015,64(24):248801-248801
利用价格低廉、性能优良的金属纳米颗粒增强太阳电池的光吸收具有广阔的应用前景. 通过建立三维数值模型, 模拟了微晶硅薄膜电池前表面周期性分布的Al纳米颗粒阵列对电池光吸收的影响, 并对其结构参数进行了优化. 模拟结果表明: 对于球状Al纳米颗粒阵列, 影响电池光吸收的关键参数是周期P与半径R的比值, 或者说是颗粒的表面覆盖度; 当P/R=4–5时, 总的光吸收较参考电池提高可达20%. 与球状颗粒相比, 优化后的半球状Al纳米颗粒阵列可获得更好的陷光效果, 但后者对颗粒半径R的变化较敏感. 另外, 结合电场分布, 对电池光吸收增强的物理机理进行了分析.  相似文献   

6.
金属纳米颗粒阵列中形成的四偶极晶格共振模式具有低辐射损耗、高品质因子的特性,因此广泛应用于纳米激光、传感、固态照明等领域.基于时域有限差分法在均匀环境下研究了银纳米圆柱阵列的光谱与近场特性.研究结果表明,在x偏振光直入射下,通过调节阵列x方向的周期,共振强度先增加后降低,当两个方向上的周期相等时,提出的阵列结构能够产生一个线宽约0.4 nm、品质因子高达1815的四偶极晶格共振模式,这种共振模式呈现出Fano线型的透射谷;调控y方向的周期能够实现从Fano线型的透射峰到透射谷的转变.本文说明了粒子大小、晶格周期对四偶极晶格共振模式的重要性,同时为银纳米颗粒在可见光波段设计高品质因子共振提供了优化策略.  相似文献   

7.
刘云凤  刘彬  何兴道  李淑静 《物理学报》2016,65(6):64207-064207
提出了一种基于六角格子光子晶体波导微腔和Fabry-Perot(FP)腔非对称耦合的全光二极管结构, 它由一个包含非线性Kerr介质的高Q值微腔与一个光子晶体波导中的FP腔组成. 通过有限时域差分方法对其传输特性进行了仿真, 发现通过两腔的非对称耦合可以实现在特定光强度下的正向传输、反向截止的功能. 在靠近微腔方向光入射时, 特定强度的光可以激发非线性微腔的Kerr效应, 改变了Fano腔的共振频率, 从而变成透射状态. 而远离微腔方向光入射, 由于这个不对称的结构造成场局域的分布不对称, 激发微腔Kerr效应的光强还不够, 所以光不能透射. 所设计的全光二极管结构具有良好的性能参数: 最大透射率高和高透射比、光强阈值低和易于集成等.  相似文献   

8.
By embedding metal nanoparticles within polymeric materials, selective thermal polymer processing can be accomplished via irradiation with light resonant with the nanoparticle surface plasmon resonance due to the photothermal effect of the nanoparticles which efficiently transforms light into heat. The wavelength and polarization sensitivity of photothermal heating from embedded gold nanorods is used to selectively process a collection of polymeric nanofibers, completely melting those fibers lying along a chosen direction while leaving the remaining material largely unheated and unaffected. Fluorescence‐based temperature and viscosity sensing was employed to confirm the presence of heating and melting in selected fibers and its absence in counter‐aligned fibers. Such tunable specificity in processing a subset of a sample, while the remainder is unchanged, cannot easily be achieved through conventional heating techniques.  相似文献   

9.
本文利用离散点偶极子近似方法(DDA)研究了金和银纳米粒子二维周期阵列的光学性质。研究结果表明二维周期阵列的消光性质及其表面等离子共振(SPR)波长受到阵列内粒子组成材料、粒子形状尺寸、阵列周期和阵列排布方式等因素的影响。对于二维正方阵列,当周期较小时(一般小于300 nm),阵列的共振波长主要取决于粒子组成材料和形状尺寸;当周期与阵列单体的共振波长附近时,阵列的消光谱中会出现极窄且锐的SPR共振峰,峰位只与阵列的周期值相关。改变阵列在平行和垂直于入射光偏振方向的周期,可以方便地调节二维长方阵列的共振峰的峰位和峰宽。  相似文献   

10.
殷澄  许田  陈秉岩  韩庆邦 《物理学报》2015,64(16):164202-164202
当金属纳米粒子形成规则分布且阵列周期与单粒子的共振波长近似匹配时, 会形成一种特殊的阵列共振, 这种共振比单粒子的局域表面等离子体共振具有更窄的共振线宽和更高的共振强度. 基于修正的长波近似方法, 讨论了矩形阵列的消光截面与阵列因子和单粒子的极化率之间的关系; 并详细研究了在不同偏振的入射光照射下, 阵列因子随着电偶极子方向的改变而产生的变化, 以及这一效应对阵列共振和消光截面所产生的影响. 结果表明, 大型的方阵是偏振无关的; 在矩形阵列中, 沿着阵列两个轴向的相邻粒子之间的耦合形成了阵列因子的两个极值, 并且分别对应了散射截面的最小值.  相似文献   

11.
Conventional approaches to control and shape the scattering pattems of light generated by different nanostructures are mostly based on engineering of their electric response due to the fact that most metallic nanostructures support only electric resonances in the optical frequency range. Recently, fuelled by the fast development in the fields of metamaterials and plasmonics, artificial optically-induced magnetic responses have been demonstrated for various nanostructures. This kind of response can be employed to provide an extra degree of freedom for the efficient control and shaping of the scattering patterns of nanoparticles and nanoantennas. Here we review the recent progress in this research direction of nanoparticle scattering shaping and control through the interference of both electric and optically-induced magnetic responses. We discuss the magnetic resonances supported by various structures in different spectral regimes, and then summarize the original results on the scattering shaping involving both electric and magnetic responses, based on the interference of both spectrally separated (with different resonant wavelengths) and overlapped dipoles (with the same resonant wavelength), and also other higher-order modes. Finally, we discuss the scattering control utilizing Fano resonances associated with the magnetic responses.  相似文献   

12.
Optical anisotropy of indium nanoclusters formed on the (001) surface of indium arsenide was found by differential reflectance anisotropy spectroscopy. The fact of such an observation for nanocluster arrays unambiguously evidences the presence of their macroscopic anisotropy which could not be disclosed by conventional diagnostics techniques. The scale of the observed plasmonic anisotropy signal exceeds by two orders of magnitude the scale of anisotropy signals from valence-bond structures formed on a semiconductor surface. A resonant feature observed in reflectance anisotropy spectra is interpreted in the model of coupled dipole plasmons belonging to ellipsoidal nanoparticles. Estimation based on the experimental spectra shows that within the sample surface the lengths of ellipsoid semiaxes differ from each other by a few percent.  相似文献   

13.
Nanoparticle plasmonics is a rapidly emerging research field that deals with the fabrication and optical characterization of noble metal nanoparticles of various size, shape, structure, and tunable plasmon resonances over VIS-NIR spectral band. The recent simultaneous advances in synthesis, characterization, electromagnetic simulation, and surface functionalization of plasmonic nanoparticles by biospecific molecular probes have led to a perfect publication storm in discoveries and potential biomedical applications of plasmon-resonant nanoparticle bioconjugates. Here, we present an overview of these topics. First, we discus basic wet-chemical routes to fabricate conjugates of gold, silver, or composite particles with controllable size, shape, structure and with surface functionalization by biospecific molecules. Second, we consider the single-particle dipole and multipole optics and coupled plasmonic nanoparticle arrays. Finally, we discus application of plasmonic bioconjugates to such fields as homogeneous and solid-phase assays, biomedical sensing and imaging, biodistribution and toxicity aspects, drug delivery and plasmonic photothermal therapy.  相似文献   

14.
The interaction of visible light with the particle-plasmon resonance of metallic nanoparticles can be controlled by geometrical arrangement of nanoparticle arrays. These arrays are placed on a substrate that supports guided modes in the wavelength range of the particle plasmon. Coupling of this particle-plasmon resonance to the directly incident light and to the waveguide modes results in almost complete suppression of light extinction within narrow spectral bands due to destructive interference. Variation of the structure parameters allows continuous tuning of these high-transmission bands across the particle-plasmon resonance.  相似文献   

15.
Cho KH  Kim JY  Choi DG  Lee KJ  Choi JH  Choi KC 《Optics letters》2012,37(5):761-763
We investigated surface plasmon-waveguide hybrid resonances for enhancement of light emission in polymer light-emitting diodes (PLEDs). Hybrid waveguide-plasmon resonances in the visible range for waveguide mode and near IR range for surface plasmons were observed by incorporation of hexagonal Ag dot arrays. Considerable overlap between the emission wavelength of the PLEDs and the waveguide mode by an Ag dot array with a lattice constant of 500 nm was observed. Because of enhanced light extraction by Bragg scattering of waveguide modes, photoluminescence (PL) and electroluminescence (EL) were increased by 70% and 50%, respectively.  相似文献   

16.
We present near-field distributions around an isolated 800-nm silica or silicon nanoparticle, and nanoparticle arrays of 800-nm silica or silicon nanoparticles, on a silicon substrate by the finite-difference time-domain method when 800-nm light is irradiated obliquely to the substrate. Nanopatterning mediated with the nanoparticle system is promising for large-area, high-throughput patterning by using an enhanced localized near-field ablation by the nanoscattered light lens effect. The irradiation area cannot be extended for silica nanoparticles, because the optical field enhancement factor is low. Gold nanoparticles can generate highly enhanced near fields, although at present there are no useful ways to arrange the gold nanoparticles on the substrate at a high throughput. Silicon nanoparticles with high dielectric permittivity have optical characteristics of both silica and gold nanoparticles. The particle arrangement on the Si substrate is technically easy using a wet pulling process. From the calculation, high optical field intensity is acquired with oblique s-polarized irradiation to the substrate under silicon nanoparticle arrays, and the intensity is almost the same as that under gold nanoparticle arrays under the same condition. With this method, high-throughput nanopatterning for a large area would be achievable.  相似文献   

17.
We reveal unusually strong polarization sensitivity of electric and magnetic dipole resonances of high‐index dielectric nanoparticles placed on a metallic film. By employing dark‐field spectroscopy, we observe the polarization‐controlled transformation from high‐Q magnetic‐dipole scattering to broadband suppression of scattering associated with the electric dipole mode, and show numerically that it is accompanied by a strong enhancement of the respective fields by the nanoparticle. Our experimental data for silicon nanospheres are in an excellent agreement with both analytical calculations based on Green's function approach and the full‐wave numerical simulations. Our findings further substantiate dielectric nanoparticles as strong candidates for many applications in enhanced sensing, spectroscopy and nonlinear processes at the nanoscale.

  相似文献   


18.
The results of experimental and theoretical investigation of planar two-dimensional (2D) samples of plasmon structures are presented. The samples represent a 2D lattice of gold nanoparticles embedded in a thin dielectric layer and are studied by atomic force microscopy (AFM) and optical methods. Absorption bands associated with the excitation of various surface plasmon resonances (SPR) are interpreted. It is found that the choice of the mutual orientation of the polarization plane and the edge of the unit cell of the 2D lattice determines the spectral position of the lattice surface plasmon resonance (LSPR) related to the lattice period. It is shown that the interaction of p- and s-polarized light with a 2D lattice of nanoparticles is described by the dipole–dipole interaction between nanoparticles embedded in a medium with effective permittivity. Analysis of the spectra of ellipsometric parameters allows one to determine the amplitude and phase anisotropy of transmission, which is a consequence of the imperfection of the 2D lattice of samples.  相似文献   

19.
Hybrid Pd–Ag nanoparticle arrays composed of randomly distributed Pd nanoparticles in dense packing and a small number of dispersed Ag nanoparticles were fabricated with controlled coverage. Photo-enhanced conductance was observed in the nanoparticle arrays. Largest enhancement, which can be higher than 20 folds, was obtained with 450 nm light illumination. This wavelength was found to correlate with the surface plasmon resonance of the Ag nanoparticles. Electron transport measurements showed there were significant Coulomb blockade in the nanoparticle arrays and the blockade could be overcome with the surface plasmon enhanced local field of Ag nanoparticles induced by light illumination.  相似文献   

20.
The collective plasmon resonances in a monolayer formed by metal or metal-dielectric nanoparticles with dipole or quadrupole single-particle resonances are theoretically and experimentally studied. The extinction, scattering, and absorption spectra are calculated using an exact many-particle solution for the system of interacting particles. With increasing surface density of particles in the monolayer, the dipole resonance is suppressed, and the spectrum of the collective system is determined by the quadrupole plasmon only. It is shown that the selective suppression of the long-wavelength extinction band is caused by the collective suppression of the dipole scattering mode, whereas the short-wavelength absorption spectrum of the monolayer differs little from the single-particle spectrum. Using dark-field light and atomic force microscopy, the kinetics of self-assembling of nanoshells is studied. It is shown that the universal linear relation between the relative shift of the wavelength of the collective quadrupole resonance and the relative increment of the refractive index of the surrounding medium is implemented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号