首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Since the development of supramolecular chemical biology, self‐organised nano‐architectures have been widely explored in a variety of biomedical applications. Functionalized synthetic molecules with the ability of non‐covalent assembly in an aqueous environment are typically able to interact with biological systems and are therefore especially interesting for their use in theranostics. Nanostructures based on π‐conjugated oligomers are particularly promising as theranostic platforms as they bear outstanding photophysical properties as well as drug loading capabilities. This Feature Article provides an overview on the recent advances in the self‐assembly of intrinsically fluorescent nanoparticles from π‐conjugated small molecules such as fluorene or perylene based chromophores for biomedical applications.

  相似文献   


2.
Polyethers—polymers with the structural element (R'‐O‐R)n in their backbone—are an old class of polymers which were already used at the time of the ancient Egyptians. However, still today these materials are highly important with applications in all areas of our life, reaching from the automotive and paper industry to cosmetics and biomedical applications. In this Review, different aliphatic polyethers like poly(epoxide)s, poly(oxetane)s, and poly(tetrahydrofuran) are discussed. Special emphasis is placed on the history, the polymerization techniques (industrially and in academia), the properties, the applications as well as recent developments of these materials.

  相似文献   


3.
Thermoresponsive linear polymers and their corresponding aggregates or nanogels typically show similar thermoresponsive profiles. In this study, the authors demonstrate reversible chemical switching between linear polymers and their cross‐linked nanogels. The linear polymers exhibit sharp thermal transitions typical of common thermoresponsive polymers but the cross‐linked nanogels exhibit “linear” thermal transitions over a relatively broad temperature range. The reversible switching between these two different polymer architectures with distinct thermoresponses represents a unique example of how the responsive properties of smart polymers can be significantly manipulated via polymer architecture engineering.

  相似文献   


4.
Herein, the first example of photosensitive cyclic amphiphilic homopolymers consisting of multiple biphenyl azobenzene chromophores in the cyclic main chain tethered with hydrophilic tetraethylene glycol monomethyl ether units is presented. The synthetic approach involves sequentially performed thermal catalyzed “click” step‐growth polymerization in bulk, and Cu(I)‐catalyzed azide–alkyne cycloaddition (CuAAC) intramolecular cyclization from α‐alkyne/ω‐azide linear precursors. It is observed that such amphiphilic macrocycles exhibit increased glass transition temperatures (Tg), slightly faster trans–cis–trans photoisomerization, and enhanced fluorescence emission intensity compared with the corresponding linear polymers. In addition, the cyclic amphiphilic homopolymers self‐assemble into spherical nanoparticles with smaller sizes which possess slower photoresponsive behaviors in a tetrahydrofuran/water mixture compared with those of the linear ones. All these interesting observations suggest that the cyclic topology has a great influence on the physical properties and self‐assembly behavior of these photoresponsive amphiphilic macrocycles in general.

  相似文献   


5.
Anion recognition between the triurea receptor and phosphate anion is demonstrated as the cross‐linkage to build supramolecular polymer gels for the first time. A novel multi‐block copolymer ( 3) is designed to have functional triurea groups as cross‐linking units along the polymer main chain. By virtue of anion coordination between the triurea receptor and phosphate anion with a binding mode of 2:1, supramolecular polymer gels are then prepared based on anion recognition using 3 as the building block.

  相似文献   


6.
Type II photoinitiated self‐condensing vinyl polymerization for the preparation of hyperbranched polymers is explored using 2‐hydroxyethyl methacrylate (HEMA) or 2‐(dimethylamino)ethyl methacrylate (DMAEMA), and methyl methacrylate as hydrogen donating inimers and comonomer, respectively, in the presence of benzophenone and camphorquinone under UV and visible light. Upon irradiation at the corresponding wavelength, the excited photoinitiator abstracts hydrogen from HEMA or DMAEMA leading to the formation of initiating radicals. Depending on the concentration of inimers, type of the photoinitiator, and irradiation time, hyperbranched polymers with different branching densities and cross‐linked polymers are formed.

  相似文献   


7.
The unique mechanical performance of nacre, the pearly internal layer of shells, is highly dependent on its complex morphology. Inspired by the structure of nacre, the fabrication of well‐ordered layered inorganic–organic nanohybrids is presented herein. This biomimetic approach includes the use of a block copolymer template, consisting of hydrophobic poly(vinylidene fluoride) (PVDF) lamellae covered with hydrophilic poly(methacrylic acid) (PMAA), to direct silica (SiO2) mineralization. The resulting PVDF/PMAA/SiO2 nanohybrid material resembles biogenic nacre with respect to its well‐ordered and layered nanostructure, alternating organic–inorganic phases, macromolecular template, and mild processing conditions.

  相似文献   


8.
A novel route for the synthesis of poly(ethylene glycol)‐b‐polystyrene copolymer, starting from commercially available poly(ethylene glycol) methyl ether and azido terminated polystyrene prepared by atom transfer radical polymerization and subsequent nucleophilic substitution, is applied with simplicity and high efficiency. The combination of photoinduced copper (I)‐catalyzed alkyne‐azide cycloaddition (CuAAC) and ketene chemistry reactions proceeds either simultaneously or sequentially in a one‐pot procedure under near‐visible light irradiation. In both cases, excellent block copolymer formations are achieved, with an average molecular weight of around 7000 g mo1−1 and a polydispersity index of 1.20.

  相似文献   


9.
By anchoring alkynylplatinum(II) terpyridine molecular tweezer/pyrene recognition motif on the chain‐ends of telechelic polycaprolactone, high‐molecular‐weight supramolecular polymers have been successfully constructed via noncovalent chain extension, which demonstrate fascinating rheological and thermal properties. Moreover, the resulting assemblies exhibit interesting temperature‐ and solvent‐responsive behaviors, which are promising for the development of adaptive functional materials.

  相似文献   


10.
Today's olefin metathesis catalysts show high reactivity, selectivity, and functional group tolerance and allow the design of new syntheses of precisely functionalized polymers. Here the synthesis of a new end‐capping reagent is investigated allowing the introduction of a highly reactive activated ester end‐group at the polymer chain end as well as its prefunctionalization to directly introduce functional moieties. The versatility of this new end‐capping reagent is demonstrated by utilizing it to synthesize a so‐called termimer (a monomer with termination capabilities). Copolymerization of a norbornene derivative with the termimer leads to hyperbranched ring‐opening metathesis polymerization polymers as proven by gel permeation chromatography and MALDI‐ToF‐(matrix‐assisted laser desorption/ionization time of flight) mass spectrometry.

  相似文献   


11.
The dimensions of nanocelluloses are important factors in controlling their material properties. The present study reports a fast and robust method for estimating the widths of individual nanocellulose particles based on the turbidities of their water dispersions. Seven types of nanocellulose, including short and rigid cellulose nanocrystals and long and flexible cellulose nanofibers, are prepared via different processes. Their widths are calculated from the respective turbidity plots of their water dispersions, based on the theory of light scattering by thin and long particles. The turbidity‐derived widths of the seven nanocelluloses range from 2 to 10 nm, and show good correlations with the thicknesses of nanocellulose particles spread on flat mica surfaces determined using atomic force microscopy.

  相似文献   


12.
Radial symmetry is essential for the conventional view of the polymer spherulite microstructure. Typically it is assumed that, in the course of the spherulite morphogenesis, the lamellar crystals grow radially. Using submicron X‐ray diffraction, it is shown that in banded spherulites of poly(propylene adipate) the crystals have the shape of a helix with flat‐on crystals winding around a virtual cylinder of about 6 µm in diameter. The helix angle of 30° implies that the crystal growth direction is tilted away from the spherulite radius by this angle. The implications of the helical crystal shape contradict the paradigm of the spherulitic microstructure. The radial growth rate of such spherulites does not correspond to the crystal growth rate, but to the propagation rate of the virtual cylinder the ribbons wind around.

  相似文献   


13.
Polymers with pendant phenoxyl radicals are synthesized and the electrochemical properties are investigated in detail. The monomers are polymerized using ring‐opening metathesis polymerization (ROMP) or free‐radical polymerization methods. The monomers and polymers, respectively, are oxidized to the radical either before or after the polymerization. These phenoxyl radicals containing polymers reveal a reversible redox behavior at a potential of −0.6 V (vs Ag/AgCl). Such materials can be used as anode‐active material in organic radical batteries (ORBs).

  相似文献   


14.
Cationic imidazolium‐functionalized polyethylene is accessible by insertion copolymerization of ethylene and allyl imidazolium tetrafluoroborate (AIm‐BF4) with phosphinesulfonato palladium(II) catalyst precursors. Imidazolium‐substituted repeat units are incorporated into the main chain and the initiating saturated chain end of the linear polymers, rather than the terminating unsaturated chain end. The counterion of the allyl imidazolium monomer is decisive, with the chloride analogue (AIm‐Cl) no polymerization is observed. Stoichiometric studies reveal the formation of an inactive chloride complex from the catalyst precursor. An effect of moderate densities (0.5 mol%) of ionic groups on the copolymers' physical properties is exemplified by an enhanced wetting by water.

  相似文献   


15.
The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition–fragmentation chain transfer (RAFT) solution polymerization of n‐butyl acrylate with the aid of simulations, explicitly accounting for the chain length distribution of all macrospecies types. Since perfect isothermicity can be established in a microreactor, less side products due to backbiting and β‐scission are formed compared to the batch operation in which ineffective heat removal leads to an undesirable temperature spike. For a given RAFT chain transfer agent (CTA), additional microstructural control results under microflow conditions by optimizing the reaction temperature, lowering the dilution degree, or decreasing the initial molar ratio of monomer to RAFT CTA.

  相似文献   


16.
The functionalization of zinc oxide (ZnO) nanoparticles by poly(3‐hexylthiophene) (P3HT) brush is completed by the combination of a mussel inspired biomimetic anchoring group and Huisgen cyclo‐addition “click chemistry.” Herein, the direct coupling of an azide modified catechol derivative with an alkyne end‐functionalized P3HT is described. This macromolecular binding agent is used to access core@corona ZnO@P3HT with a stable and homogeneous conjugated organic corona. Preliminary photoluminescence measurement proves an efficient electron transfer from the donor P3HT to the acceptor ZnO nanoparticles upon grafting, thus demonstrating the potential of such a combination in organic electronics.

  相似文献   


17.
Aggregation‐induced emission (AIE) dye‐based cross‐linked fluorescent polymeric nanoparticles (FPNs) are facilely prepared via a two‐step polymerization process including emulsion polymerization and subsequent anhydride cross‐linking. Then, a variety of characterization methods are carried out to determine the performance of the FPNs, which show high dispersibility and strong fluorescence in an aqueous solution due to the hydrophilic carboxyl groups on the surfaces and the AIE components as the cores. Biocompatibility evaluation and cell imaging results suggest that these FPNs are biocompatible for cell imaging. More importantly, this cross‐linking strategy is proven to overcome the issue of critical micelle concentration and opens the opportunity to develop more robust fluorescent bioprobes.

  相似文献   


18.
Macrocellular silicone polymers are obtained after solidification of the continuous phase of a poly(dimethylsiloxane) emulsion, which contains poly(ethylene glycol) drops of sub‐millimetric dimensions. Coalescence of the liquid template emulsion is prohibited by a reactive blending approach. The relationship is investigated in detail between the interfacial properties and the emulsion stability, and micro‐ and millifluidic techniques are used to generate macrocellular polymers with controlled structural properties over a wider range of cell sizes (0.2–2 mm) and volume fractions of the continuous phase (0.1%–40%). This approach could easily be transferred to a wide range of polymeric systems.

  相似文献   


19.
A recent response on a publication from our team investigating solvent effects on propagation rate coefficients is commented. Among other issues, we point to the fact that the response interprets only a subset of the data provided in our original contribution.

  相似文献   


20.
Pentacyclic lactam acceptor unit TPTI invented by our group is proved to be a good building block for efficient D‐A copolymers used in organic solar cells. Here, two D‐A copolymers PBTTPTI and PTTTPTI are developed by copolymerizing TPTI with 2,2′‐bithiophene (BT) or thieno[3,2‐b]thiophene (TT). PBTTPTI and PTTTPTI exhibit good solubility and strong interchain π–π interaction even in dilute solution. They possess deep HOMO levels (ca. ‐5.3 eV), partial crystallinity, and good hole mobilities. Blending with PC71BM, PBTTPTI and PTTTPTI give decent power conversion efficiencies (PCE) up to 6.83% and 5.86%, with outstanding fill factors (FF) of 74.3% and 71.3%, respectively.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号