首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metallocenes are organometallic compounds with reversible redox profiles and tunable oxidation and reduction potentials, depending on the metal and substituents at the cyclopentadienyl rings. Metallocenes have been introduced in macromolecules to combine the redox‐activity with polymer properties. There are many examples of such hydrophobic polymer materials, but much fewer water‐soluble examples are found scattered across the polymer literature. However, in terms of drug delivery and other biological applications, water solubility is essential. For this very reason, all the synthetic routes to water‐soluble metallocene containing polymers are collected and discussed here. The focus is on neutral ferrocene‐ and ruthenocene‐containing and charged cobaltocenium‐containing macromolecules (i.e., symmetrical sandwich complexes). The synthetic protocols, self‐assembly behavior, and other benefits of the obtained materials are discussed.

  相似文献   


2.
A simplistic convenient “arm‐first” catalytic synthesis method is demonstrated to render soft unimolecular star polyethylene nanoparticles. Low‐dispersity polyethylene arms of controllable length and topology are first synthesized via Pd‐catalyzed “living” ethylene poly­merization. The subsequent addition of norbornadiene as a unique cross‐linker renders the block polymer containing a short polynorbornadiene (PNBD) sequence. Efficient and rapid catalytic cross‐linking of the PNBD sequences occurs in the polymer precipitation and drying steps to give rise to star polyethylene nanoparticles. The star polymers are featured with tunable arm length and topology, high molecular weight (as high as 1770 kg mol−1), high arm numbers (as high as 88), and desirable average nano­particle size (29−72 nm).

  相似文献   


3.
Temperature‐triggered phase separation of recombinant proteins has offered substantial opportunities in the design of nanoparticles for a variety of applications. Herein, the temperature‐triggered phase separation behavior of a recombinant hydrophilic resilin‐like polypeptide (RLP) is described. The transition temperature and sizes of RLP‐based nanoparticles can be modulated based on variations in polypeptide concentration, salt identity, ionic strength, pH, and denaturing agents, as indicated via UV–Vis spectroscopy and dynamic light scattering (DLS). The irreversible particle formation is coupled with secondary conformational changes from a random coil conformation to a more ordered β‐sheet structure. These RLP‐based nanoparticles could find potential use as mechanically‐responsive components in drug delivery, nanospring, nanotransducer, and biosensor applications.

  相似文献   


4.
A series of fluorene‐based conjugated polymers containing the aggregation‐induced emissive (AIE)‐active tetraphenylethene and dicarboxylate pseudocrown as a receptor exhibits a unique dual‐mode sensing ability for selective detection of lead ion in water. Fluorescence turn‐off and turn‐on detections are realized in 80%–90% and 20% water in tetrahydrofuran (THF), respectively, for lead ion with a concentration as low as 10−8 m .

  相似文献   


5.
Polysiloxane‐modified tetraphenylethene (PTPESi) is successfully synthesized by attaching tetraphenylethene (TPE) units onto methylvinyldiethoxylsiloxane and subsequent polycondensation. Introducing polysiloxane into TPE has minimal effect on the photophysical properties and aggregation‐induced emission behavior of TPE. The highest occupied and lowest unoccupied molecular orbital (HOMO and LUMO) energy levels of PTPESi are located mainly on the tetraphenylethene moieties. The fluorescence intensity and the half width of the emission peak of PTPESi before and after annealing at 120 °C for 12 h are nearly the same, indicating high thermal stability and morphological stability. In addition, use of PTPESi film as a sensor toward the vapor‐phase detection of explosives is also studied and it displays quite high fluorescence quenching efficiency and good reversibility.

  相似文献   


6.
Dynamic covalent hydrogels are facilely prepared from biocompatible polysaccharides in physiological conditions by the formation of phenylboronate ester cross‐links. This is based on the simple mixing of carboxylate‐containing polysaccharides (i.e., hyaluronic acid or carboxymethylcellulose) modified with phenylboronic acid and maltose moieties according to mild coupling reactions performed in aqueous solution. The formation of dynamic networks based on reversible boronic‐ester cross‐links is demonstrated by analyzing their rheological behavior. This study shows that these gels can adapt their structure in response to chemical stimuli such as variations in pH or addition of glucose and self‐heal.

  相似文献   


7.
Three novel solution‐processable polyimides containing triphenylamine and pendant viologen moieties are prepared from the newly synthesized diamine and three commercially available dianhydrides. The thermally stable polyimide with strong donor–acceptor charge‐transfer possesses write‐once read‐many‐times memory behavior with excellent operation stability. The obtained multicolored electrochromic polymer films reveal ambipolar electrochemical behavior with high optical transmittance contrast of coloration changed from transmissive neutral state to the cyan/magenta/yellow redox states, implying great potential for application in smart window and displays.

  相似文献   


8.
Imitating the natural “energy cascade” architecture, we present a single‐molecular rod‐like nano‐light harvester (NLH) based on a cylindrical polymer brush. Block copolymer side chains carrying (9,9‐diethylfluoren‐2‐yl)methyl methacrylate units as light absorbing antennae (energy donors) are tethered to a linear polymer backbone containing 9‐anthracenemethyl methacrylate units as emitting groups (energy acceptors). These NLHs exhibit very efficient energy absorption and transfer. Moreover, we manipulate the energy transfer by tuning the donor–acceptor distance.

  相似文献   


9.
Diarylbutadiyne derivatives are ideal monomers for providing the π‐electron‐conjugated system of polydiacetylenes (PDAs). The geometrical parameters for diacetylene topochemical polymerization are known. However, control of the molecules under these parameters is yet to be addressed. This work shows that by simply tailoring diarylbutadiyne with amide side‐chain substituents, the arrangement of the substituents and the resulting hydrogen bond framework allows formation of π‐electron‐conjugated PDA.

  相似文献   


10.
Sandwich complexes feature unique properties as the physical and electronic properties of a hydrocarbon ligand or its derivative are integrated into the physical, electronic, magnetic, and optical properties of a metal. Incorporation of these complexes into macromolecules results in intriguing physical, electrical, and optical properties that were hitherto unknown in organic‐based macromolecules. These properties are tunable through well‐designed synthetic strategies. This review surveys many of the synthetic approaches that have resulted in tuning the properties of sandwich complex‐containing macromolecules. While the past two decades have seen an ever‐growing number of research publications in this field, gaps remain to be filled. Thus, we expect this review to stimulate research interest towards bridging these gaps, which include the insolubility of some of these macromolecules as well as expanding the scope of the sandwich complexes.

  相似文献   


11.
Nine different perylene derivatives are prepared and their ability to initiate, when combined with an iodonium salt (and optionally N‐vinylcarbazole), a ring‐opening cationic photopolymerization of epoxides under very soft halogen lamp irradiation is investigated. One of them is particularly efficient under a red laser diode exposure at 635 nm and belongs now to the very few systems available at this wavelength. The photochemical mechanisms are studied by steady‐state photolysis, electron spin resonance spin trapping, fluorescence, cyclic voltammetry, and laser flash photolysis techniques.

  相似文献   


12.
Photo‐crosslinkable and amine‐containing block copolymer nanoparticles are synthesized via reversible addition–fragmentation chain transfer (RAFT) polymerization‐induced self‐assembly of a multifunctional core‐forming monomer, 2‐((3‐(4‐(diethylamino)phenyl)acryloyl)oxy)ethyl methacrylate (DEMA), using poly(2‐hydroxypropyl methacrylate) macromolecular chain transfer agent as a steric stabilizer in methanol at 65 °C. By tuning the chain length of PDEMA, a range of nanoparticle morphologies (sphere, worm, and vesicle) can be obtained. Since cinnamate groups can easily undergo a [2 + 2] cycloaddition of the carbon–carbon double bonds upon UV irradiation, the as‐prepared block copolymer nanoparticles are readily stabilized by photo‐crosslinking to produce anisotropic nanoparticles. The crosslinked block copolymer nanoparticles can be used as templates for in situ formation polymer/gold hybrid nanoparticles.

  相似文献   


13.
The chemical control of cell division has attracted much attention in the areas of single cell‐based biology and high‐throughput screening platforms. A mussel‐inspired cytocompatible encapsulation method for achieving a “cell‐division control” with cross‐linked layer‐by‐layer (LbL) shells is developed. Catechol‐grafted polyethyleneimine and hyaluronic acid are chosen as polyelectrolytes for the LbL process, and the cross‐linking of polyelectrolytes is performed at pH 8.5. Cell division is controlled by the number of the LbL nanolayers and cross‐linking reaction. We also suggest a new measuring unit, , for quantifying “cell‐division timing” based on microbial growth kinetics.

  相似文献   


14.
The synthesis of thiol‐functionalized long‐chain highly branched polymers (LCHBPs) has been accomplished in combination of ring‐opening metathesis polymerization (ROMP) and thiol‐Michael addition click reaction. A monotelechelic polymer with a terminal acrylate and many pendent thiol groups is first prepared through adding an internal cis‐olefin terminating agent to the reaction mixture immediately after the completion of the living ROMP, and then utilized as an ABn‐type macromonomer in subsequent thiol‐ene reaction between acrylate and thiol, yielding LCHBPs as the reaction time prolonged. Au nanoparticles are then covalently conjugated onto the surface of thiol‐functionalized LCHBP to fabricate novel hybrid nanostructures, which is shown as one interesting application of such functionalized metathesis polymers. This facile approach can be extended toward the fabrication of novel nanomaterials with sophisticated structures and tunable multifunctionalities.

  相似文献   


15.
Novel supramolecular phosphorescent polymers (SPPs) are synthesized as a new class of solution‐processable electroluminescent emitters. The formation of these SPPs takes advantage of the efficient non‐bonding assembly between bis(dibenzo‐24‐crown‐8)‐functionalized iridium complex monomer and bis(dibenzylammonium)‐tethered co‐monomer, which is monitored by 1H NMR spectroscopy and viscosity measurements. These SPPs show good film morphology and an intrinsic glass transition with a Tg of 94–116 °C. Noticeably, they are highly photoluminescent in solid state with quantum efficiency up to ca. 78%. The photophysical and electroluminescent properties are strongly dependent on the molecular structures of the iridium complex monomers.

  相似文献   


16.
High‐porosity interconnected, thermoresponsive macroporous hydrogels are prepared from oil‐in‐water high internal phase emulsions (HIPEs) stabilized by gelatin‐graft‐poly(N‐isopropylacrylamide). PolyHIPEs are obtained by gelling HIPEs utilizing the thermoresponsiveness of the copolymer components. PolyHIPEs properties can be controlled by varying the aqueous phase composition, internal phase volume ratio, and gelation temperature. PolyHIPEs respond to temperature changes experienced during cell seeding, allowing fibroblasts to spread, proliferate, and penetrate into the scaffold. Encapsulated cells survive ejection of cell‐laden hydrogels through a hypodermic needle. This system provides a new strategy for the fabrication of safe injectable biocompatible tissue engineering scaffolds.

  相似文献   


17.
Molecular bottle‐brush functionalized single‐walled carbon nanotubes (SWCNTs) with superior dispersibility in water are prepared by a one‐pot synthetic methodology. Elongating the main‐chain and side‐chain length of molecular bottle‐brushes can further increase SWCNT dispersibility. They show significant enhancement of SWCNT dispersibility up to four times higher than those of linear molecular functionalized SWCNTs.

  相似文献   


18.
The sodium salt of the new bis(mesitoyl)phosphinic acid (BAPO‐OH) can be prepared in a very efficient one‐pot synthesis. It is well soluble in water and hydrolytically stable for at least several weeks. Remarkably, it acts as an initiating agent for the surfactant‐free emulsion polymerization (SFEP) of styrene to yield monodisperse, spherical nanoparticles. Time‐resolved electron paramagnetic resonance (TR‐EPR) and chemically induced electron polarisation (CIDEP) indicate preliminary mechanistic insights.

  相似文献   


19.
In this research, the synthesis of boron‐ketoiminate‐containing polymers is reported with large molecular weights ( = 20 000) and their optical properties are examined by UV–vis absorption and photoluminescence spectrometries. It is shown that the polymers exhibit strong emission both in the solution and solid states (Φ PL,THF = 0.46–0.80, Φ PL,film = 0.13–0.38). These optical properties can be explained by a donor–acceptor interaction between the boron ketoiminate and the electron‐donating comonomer such as fluorene or bithiophene. Furthermore, in the solid states, their emission colors can be successfully tuned from blue to orange by the substituents on the nitrogen atom with the difference of the steric hindrance (λ PL,THF = 464–546 nm, λ PL,film = 486–604 nm).

  相似文献   


20.
Hierarchical semicrystalline block copolymer nanoparticles are produced in a segmented gas‐liquid microfluidic reactor with top‐down control of multiscale structural features, including nanoparticle morphologies, sizes, and internal crystallinities. Control of multiscale structure on disparate length scales by a single control variable (flow rate) enables tailoring of drug delivery nanoparticle function including release rates.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号