首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Halogen bonding is a noncovalent interaction similar to hydrogen bonding, which is based on electrophilic halogen substituents. Hydrogen‐bonding‐based organocatalysis is a well‐established strategy which has found numerous applications in recent years. In light of this, halogen bonding has recently been introduced as a key interaction for the design of activators or organocatalysts that is complementary to hydrogen bonding. This Concept features a discussion on the history and electronic origin of halogen bonding, summarizes all relevant examples of its application in organocatalysis, and provides an overview on the use of cationic or polyfluorinated halogen‐bond donors in halide abstraction reactions or in the activation of neutral organic substrates.  相似文献   

2.
Inspired by the isostructural motif in α‐bromoacetophenone oxime crystals, we investigated halogen–halogen bonding in haloamine quartets. Our Kohn–Sham molecular orbital and energy decomposition analysis reveal a synergy that can be traced to a charge‐transfer interaction in the halogen‐bonded tetramers. The halogen lone‐pair orbital on one monomer donates electrons into the unoccupied σ*N?X orbital on the perpendicular N?X bond of the neighboring monomer. This interaction has local σ symmetry. Interestingly, we discovered a second, somewhat weaker donor–acceptor interaction of local π symmetry, which partially counteracts the aforementioned regular σ‐symmetric halogen‐bonding orbital interaction. The halogen–halogen interaction in haloamines is the first known example of a halogen bond in which back donation takes place. We also find that this cooperativity in halogen bonds results from the reduction of the donor–acceptor orbital‐energy gap that occurs every time a monomer is added to the aggregate.  相似文献   

3.
In recent years, the non‐covalent interaction of halogen bonding (XB) has found increasing application in organocatalysis. However, reports of the activation of metal‐ligand bonds by XB have so far been limited to a few reactions with elemental iodine or bromine. Herein, we present the activation of metal‐halogen bonds by two classes of inert halogen bond donors and the use of the resulting activated complexes in homogenous gold catalysis. The only recently explored class of iodolium derivatives were shown to be effective activators in two test reactions and their activity could be modulated by blocking of the Lewis acidic sites. Bis(benzimidazolium)‐based halogen bonding activators provided even more rapid conversion, while the non‐iodinated reference compound showed little activity. The role of halogen bonding in the activation of metal‐halogen bonds was further investigated by NMR experiments and DFT calculations, which support the mode of activation occurring via halogen bonding.  相似文献   

4.
A series of dimeric complexes formed between bromocarbon molecules and two anions (Br? and CN?) have been investigated by using MP2 method. The quantum theory of atoms in molecules (QTAIM) and the second‐order perturbation natural bond orbital (NBO) approaches were applied to analyze the electron density distributions of these complexes and to explore the nature of charge‐assisted halogen bonding interactions. As anticipated, these interactions are significantly stronger relative to the corresponding neutral ones. The results derived from ab initio calculations described herein reveal a major contribution from the electrostatic interaction on the stability of the systems considered. Beside the electrostatic interaction, the charge‐transfer force and the second‐order orbital interaction also play an important role in the formation of the complexes, as a NBO analysis suggested. The presence of halogen bonds in the complexes has been identified in terms of the QTAIM methodology, and several linear relationships have been established to provide more insight into charge‐assisted halogen bonding interactions. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

5.
A series of halogen‐bonded complexes with diborane(4) 1 and its derivatives (Li 2 , methyl 3 , CN 4 ) as the halogen acceptors as well as with XCN, XCCH, XCF3, XF (X = Cl, Br, I) as the halogen donors have been investigated by means of quantum chemical calculations at the MP2/aug‐cc‐pVTZ level. The result shows that the B?B bond is a good electron donor in halogen bonding, particularly for the halogen donor XF. Interestingly, for the halogen donor XF, the halogen bond becomes stronger in order of IF < BrF < ClF. It is found that the addition of electron‐donating substituents greatly strengthens the halogen bonding interaction to the point where it exceeds that of the majority of H‐bonds. When the N atom in 2 ‐BrCN is combined with another interaction, its strength has a further increase due to the cooperative effect. This study combines the boron compounds with halogen bonds and would be significant for expanding their applied fields. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
The competition between hydrogen‐ and halogen‐bonding interactions in complexes of 5‐halogenated 1‐methyluracil (XmU; X = F, Cl, Br, I, or At) with one or two water molecules in the binding region between C5‐X and C4?O4 is investigated with M06‐2X/6‐31+G(d). In the singly‐hydrated systems, the water molecule forms a hydrogen bond with C4?O4 for all halogens, whereas structures with a halogen bond between the water oxygen and C5‐X exist only for X = Br, I, and At. Structures with two waters forming a bridge between C4?O and C5‐X (through hydrogen‐ and halogen‐bonding interactions) exist for all halogens except F. The absence of a halogen‐bonded structure in singly‐hydrated ClmU is therefore attributed to the competing hydrogen‐bonding interaction with C4?O4. The halogen‐bond angle in the doubly‐hydrated structures (150–160°) is far from the expected linearity of halogen bonds, indicating that significantly non‐linear halogen bonds may exist in complex environments with competing interactions. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
Diatrizoic acid (DTA), a clinically used X‐ray contrast agent, crystallises in two hydrated, three anhydrous and nine solvated solid forms, all of which have been characterised by X‐ray crystallography. Single‐crystal neutron structures of DTA dihydrate and monosodium DTA tetrahydrate have been determined. All of the solid‐state structures have been analysed using partial atomic charges and hardness algorithm (PACHA) calculations. Even though in general all DTA crystal forms reveal similar intermolecular interactions, the overall crystal packing differs considerably from form to form. The water of the dihydrate is encapsulated between a pair of host molecules, which calculations reveal to be an extraordinarily stable motif. DTA presents functionalities that enable hydrogen and halogen bonding, and whilst an extended hydrogen‐bonding network is realised in all crystal forms, halogen bonding is not present in the hydrated crystal forms. This is due to the formation of a hydrogen‐bonding network based on individual enclosed water squares, which is not amenable to the concomitant formation of halogen bonds. The main interaction in the solvates involves the carboxylic acid, which corroborates the hypothesis that this strong interaction is the last one to be broken during the crystal desolvation and nucleation process.  相似文献   

8.
Even though halogen bonding—the noncovalent interaction between electrophilic halogen substituents and Lewis bases—has now been established in molecular recognition and catalysis, its use in enantioselective processes is still very rarely explored. Herein, we present the synthesis of chiral bidentate halogen‐bond donors based on two iodoimidazolium units with rigidly attached chiral sidearms. With these Lewis acids, chiral recognition of a racemic diamine is achieved in NMR studies. DFT calculations support a 1:1 interaction of the halogen‐bond donor with both enantiomers and indicate that the chiral recognition is based on a different spatial orientation of the Lewis bases in the halogen‐bonded complexes. In addition, moderate enantioselectivity is achieved in a Mukaiyama aldol reaction with a preorganized variant of the chiral halogen‐bond donor. This represents the first case in which asymmetric induction was realized with a pure halogen‐bond donor lacking any additional active functional groups.  相似文献   

9.
The observation of short halogen-carbonyl oxygen interactions in protein-ligand complexes has spurred us to use computational tools to better understand the strength of halogen bonding interactions. In this study we have produced potential energy curves for the halogen bonding interactions of several halobenzene-formaldehyde complexes. It was found that, for most halogen substituents, a halobenzene and formaldehyde form stable halogen bonded complexes with interaction energies that increase as the size of the halogen substituent increases.  相似文献   

10.
Halogen bonding is a subject of considerable interest owing to wide‐ranging chemical, materials and biological applications. The motional dynamics of halogen‐bonded complexes play a pivotal role in comprehending the nature of the halogen‐bonding interaction. However, not many attempts appear to have been made to shed light on the dynamical characteristics of halogen‐bonded species. For the first time, we demonstrate here that the combination of low‐field NMR relaxometry and Overhauser dynamic nuclear polarization (ODNP) makes it possible to obtain a cogent picture of the motional dynamics of halogen‐bonded species. We discuss here the advantages of this combined approach. Low‐field relaxometry allows us to infer the hydrodynamic radius and rotational correlation time, whereas ODNP probes the molecular translational correlation times (involving the substrate as well as the organic radical) with high sensitivity at low field.  相似文献   

11.
The halogen bond is a special non-covalent interaction, which can represent a powerful tool in supramolecular chemistry. Although the halogen bond offers several advantages compared to the related hydrogen bond, it is currently still underrepresented in polymer science. The structural related hydrogen bonding assumes a leading position in polymer materials containing supramolecular interactions, clearly indicating the high potential of using halogen bonding for the design of polymeric materials. The current developments regarding halogen bonding containing polymers include self-assembly, photo-responsive materials, self-healing materials and others. These aspects are highlighted in the present perspective. Furthermore, a perspective on the future of this rising young research field is provided.

The incorporation of halogen bonding into polymer architectures is a new approach for the design of functional materials. This perspective emphasizes the current development in the field of halogen bonding featuring polymer materials.  相似文献   

12.
Halogen bonding is an intermolecular interaction capable of being used to direct extended structures. Typical halogen‐bonding systems involve a noncovalent interaction between a Lewis base, such as an amine, as an acceptor and a halogen atom of a halofluorocarbon as a donor. Vapour‐phase diffusion of 1,4‐diazabicyclo[2.2.2]octane (DABCO) with 1,2‐dibromotetrafluoroethane results in crystals of the 1:1 adduct, C2Br2F4·C6H12N2, which crystallizes as an infinite one‐dimensional polymeric structure linked by intermolecular N...Br halogen bonds [2.829 (3) Å], which are 0.57 Å shorter than the sum of the van der Waals radii.  相似文献   

13.
Halogen bonding has recently become an effective tool to control the spin state of reactive carbenes. In this work, a series of the complexes of diphenylcarbene (DPC) that has a triplet ground state with several halogen bond donors RX were theoretically studied, and in particular, the influence of the formation of halogen bonding on the spin state of DPC was extensively explored. The spin flip depends on the difference of halogen bond energies between triplet and singlet, that is, when the difference is large enough a spin flip may occur. Furthermore, the variations of the geometries on complexation may induce the potential energy surfaces of different spin states to intersect, thus leading to intersystem crossing. Based on the energy analysis of the minimum energy crossing points (MECPs), the systems with a smaller MECP‐triplet energy barrier go through intersystem crossing more easily. Halogen bonds in the complexes, where a spin flip takes place, exhibit a partially covalent character, while other complexes show conventional behaviors of halogen bonding. According to charge decomposition analysis, the charge transfer from HOMO (DPC) to LUMO (RX) is identified as a prominent stabilizing interaction in the whole complexes.  相似文献   

14.
The first example of utilizing halogen‐bonding anion recognition to facilitate molecular motion in an interlocked structure is described. A halogen‐bonding and hydrogen‐bonding bistable rotaxane is prepared and demonstrated to undergo shuttling of the macrocycle component from the hydrogen‐bonding station to the halogen‐bonding station upon iodide recognition. In contrast, chloride‐anion binding reinforces the macrocycle to reside at the hydrogen‐bonding station.  相似文献   

15.
Halogen bonding is a noncovalent interaction that is receiving rapidly increasing attention because of its significance in biological systems and its importance in the design of new materials in a variety of areas, for example, electronics, nonlinear optical activity, and pharmaceuticals. The interactions can be understood in terms of electrostatics/polarization and dispersion; they involve a region of positive electrostatic potential on a covalently bonded halogen and a negative site, such as the lone pair of a Lewis base. The positive potential, labeled a σ hole, is on the extension of the covalent bond to the halogen, which accounts for the characteristic near‐linearity of halogen bonding. In many instances, the lateral sides of the halogen have negative electrostatic potentials, allowing it to also interact favorably with positive sites. In this discussion, after looking at some of the experimental observations of halogen bonding, we address the origins of σ holes, the factors that govern the magnitudes of their electrostatic potentials, and the properties of the resulting complexes with negative sites. The relationship of halogen and hydrogen bonding is examined. We also point out that σ‐hole interactions are not limited to halogens, but can also involve covalently bonded atoms of Groups IV–VI. Examples of applications in biological/medicinal chemistry and in crystal engineering are mentioned, taking note that halogen bonding can be “tuned” to fit various requirements, that is, strength of interaction, steric factors, and so forth.  相似文献   

16.
A systematic study on the anion‐binding properties of acyclic halogen‐ and hydrogen‐bonding bis‐triazolium carbazole receptors is described. The halide‐binding potency of halogen‐bonding bis‐iodotriazolium carbazole receptors was found to be far superior to their hydrogen‐bonding bis‐triazolium‐based analogues. This led to the synthesis of a mixed halogen‐ and hydrogen‐bonding rotaxane host containing a bis‐iodotriazolium carbazole axle component. The rotaxane’s anion recognition properties, determined by 1H NMR titration experiments in a competitive aqueous solvent mixture, demonstrated the preorganised halogen‐bonding interlocked host cavity to be halide‐selective, with a strong binding affinity for bromide.  相似文献   

17.
18.
The halogen and hydrogen bonding complexes between 2,2,6,6-tetramethylpiperidine-noxyl and trihalomethanes (CHX3, X=Cl, Br, I) are simulated by computational quantum chem-istry. The molecular electrostatic potentials, geometrical parameters and interaction energy of halogen and hydrogen bonding complexes combined with natural bond orbital analysis are obtained. The results indicate that both halogen and hydrogen bonding interactions obey the order Cl相似文献   

19.
Chalcogen bonding is the non‐covalent interaction between Lewis acidic chalcogen substituents and Lewis bases. Herein, we present the first application of dicationic tellurium‐based chalcogen bond donors in the nitro‐Michael reaction between trans‐β‐nitrostyrene and indoles. This also constitutes the first activation of nitro derivatives by chalcogen bonding (and halogen bonding). The catalysts showed rate accelerations of more than a factor of 300 compared to strongly Lewis acidic hydrogen bond donors. Several comparison experiments, titrations, and DFT calculations support a chalcogen‐bonding‐based mode of activation of β‐nitrostyrene.  相似文献   

20.
In recent years, many applications of solution‐phase halogen bonding in anion recognition, catalysis, and pseudorotaxane formation have been reported. Moreover, a number of thermodynamic data of halogen bonding interactions in organic solution are now available. To obtain detailed information of the influence of the surrounding medium on weak halogen bonds, a series of dimeric complexes of halobenzene (PhX) with three electron donors (H2O, HCHO, and NH3) were investigated by means of DFT/PBE calculations in this work. The PCM implicit solvation approach was utilized to include the effects of three solvents (cyclohexane, chloroform, and water) as representatives for a wide range of dielectric constant. In some cases, halogen‐bond distances are shown to shorten in solution, accompanied by concomitant elongation of the C? X bonds. For the remaining systems, the intermolecular distances tend to increase or remain almost unchanged under solvent effects. In general, the solvent has a slight destabilizing effect on weak halogen bonds; the strength order of halogen bonds observed in vacuum remains unchanged in liquid phases. Particularly, the interaction strength attenuates in the order I > Br > Cl in solution, consistent with the experimental measurements of weak halogen bond door abilities. The similarities between halogen and hydrogen bonding in solution were also elucidated. The results presented herein would be very useful in future applications of halogen bonding in molecular recognition and medicinal chemistry. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号