首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hairy poly(methacrylic acid‐co‐divinylbenzene)‐g‐poly(N‐isopropylacrylamide) (P(MAA‐co‐DVB)‐g‐PNIPAm) nanocapsules with pH‐responsive P(MAA‐co‐DVB) inner shell and temperature‐responsive PNIPAm brushes were prepared by combined distillation–precipitation copolymerization and surface thiol‐ene click grafting reaction using 3‐(trimethoxysilyl)propyl methacrylate‐modified silica (SiO2‐MPS) nanospheres as a sacrificial core material. The well‐defined PNIPAm was synthesized by a reversible addition fragmentation chain transfer (RAFT) polymerization. The chain end was converted to a thiol by chemical reduction. The PNIPAm was integrated into the nanocapsules via thiol‐ene click reaction. The surface thiol‐ene click reaction conduced to tunable grafting density of PNIPAm brushes. The grafting densities decreased from 0.70 chains nm?2 to 0.15 chains nm?2 with increasing the molecular weight of grafted PNIPAm chains. Using water soluble doxorubicin hydrochloride (DOX·HCl) as a model molecular, the tunable shell permeability of the nanocapsule was investigated in detail. The permeability constant can be tuned by controlling the thickness of the P(MAA‐co‐DVB) inner shell, the grafting density of PNIPAm brushes, and the environmental pH and temperature. The tunable shell permeability of these nanocapsules results in the release of the loaded guest molecules with manipulable releasing kinetics. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2202–2216  相似文献   

2.
Sequential thiol‐ene/thiol‐ene and thiol‐ene/thiol‐yne reactions have been used as a facile and quantitative method for modifying end‐groups on an N‐isopropylacrylamide (NIPAm) homopolymer. A well‐defined precursor of polyNIPAm (PNIPAm) was prepared via reversible addition‐fragmentation chain transfer (RAFT) polymerization in DMF at 70 °C using the 1‐cyano‐1‐methylethyl dithiobenzoate/2,2′‐azobis(2‐methylpropionitrile) chain transfer agent/initiator combination yielding a homopolymer with an absolute molecular weight of 5880 and polydispersity index of 1.18. The dithiobenzoate end‐groups were modified in a one‐pot process via primary amine cleavage followed by phosphine‐mediated nucleophilic thiol‐ene click reactions with either allyl methacrylate or propargyl acrylate yielding ene and yne terminal PNIPAm homopolymers quantitatively. The ene and yne groups were then modified, quantitatively as determined by 1H NMR spectroscopy, via radical thiol‐ene and radical thiol‐yne reactions with three representative commercially available thiols yielding the mono and bis end functional NIPAm homopolymers. This is the first time such sequential thiol‐ene/thiol‐ene and thiol‐ene/thiol‐yne reactions have been used in polymer synthesis/end‐group modification. The lower critical solution temperatures (LCST) were then determined for all PNIPAm homopolymers using a combination of optical measurements and dynamic light scattering. It is shown that the LCST varies depending on the chemical nature of the end‐groups with measured values lying in the range 26–35 °C. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3544–3557, 2009  相似文献   

3.
Poly(N‐isopropylacrylamide) (PNIPAAm) grafted dextran nanogels with dodecyl and thiol end groups have been synthesized by RAFT process. Dodecyl‐terminated polymers (DexPNI) can be readily dissolved in water and further self assemble into ordered stable nanostructures through direct noncovalent interactions at room temperature. SEM, AFM and DLS measurements confirm the formation of spherical nanogels at hundred‐nanometer scales. The elevation of environment temperature will indirectly result in the formation of collapsed nanostructures due to the LCST phase transition of PNIPAAm side chains. Turbidimetry results show that the phase transition behaviors of DexPNI are greatly dependent on PNIPAAm chain length and polymer concentration: increasing PNIPAAm chain length and polymer concentration both lead to lower LCSTs and sharper phase transitions. Moreover, the dodecyl‐terminated polymers can transform into thiol‐terminated versions by aminolysis of trithiocarbonate groups, and further into chemical (disulfide) cross‐linked versions (SS‐DexPNI) by oxidation. SS‐DexPNI nanogels have “doubled” chain length of PNIPAAm, and hence sharper phase transitions. In situ DLS measurements of the evolution of hydrodynamic radius attest that the self assembly of SS‐DexPNI nanogels can be selectively directed by the change in either external temperature or redox potential. These nanogels thus are promising candidates for triggered intracellular delivery of encapsulated cargo. We can also expect that the polymer can be noncovalently (by dodecyl end groups) or covalently (by thiol end groups) coated on a series of nanomaterials (e.g., carbon nanotubes, graphene, gold nanomaterials) to build a variety of novel smart, and robust nanomaterials.

  相似文献   


4.
Compared with linear polymers, more factors may affect the glass‐transition temperature (Tg) of a hyperbranched structure, for instance, the contents of end groups, the chemical properties of end groups, branching junctions, and the compactness of a hyperbranched structure. Tg's decrease with increasing content of end‐group free volumes, whereas they increase with increasing polarity of end groups, junction density, or compactness of a hyperbranched structure. However, end‐group free volumes are often a prevailing factor according to the literature. In this work, chain‐end, free‐volume theory was extended for predicting the relations of Tg to conversion (X) and molecular weight (M) in hyperbranched polymers obtained through one‐pot approaches of either polycondensation or self‐condensing vinyl polymerization. The theoretical relations of polymerization degrees to monomer conversions in developing processes of hyperbranched structures reported in the literature were applied in the extended model, and some interesting results were obtained. Tg's of hyperbranched polymers showed a nonlinear relation to reciprocal molecular weight, which differed from the linear relation observed in linear polymers. Tg values decreased with increasing molecular weight in the low‐molecular‐weight range; however, they increased with increasing molecular weight in the high‐molecular‐weight range. Tg values decreased with increasing log M and then turned to a constant value in the high‐molecular‐weight range. The plot of Tg versus 1/M or log M for hyperbranched polymers may exhibit intersecting straight‐line behaviors. The intersection or transition does not result from entanglements that account for such intersections in linear polymers but from a nonlinear feature in hyperbranched polymers according to chain‐end, free‐volume theory. However, the conclusions obtained in this work cannot be extended to dendrimers because after the third generation, the end‐group extents of a dendrimer decrease with molecular weight. Thus, it is very possible for a dendrimer that Tg increases with 1/M before the third generation; however, it decreases with 1/M after the third generation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1235–1242, 2004  相似文献   

5.
Self‐immolative polymers (SIPs) undergo depolymerization in response to the cleavage of stimuli‐responsive end‐caps from their termini. Some classes of SIPs, including polycarbamates, have depolymerization rates that depend on environmental factors such as solvent and pH. In previous work, hydrophobic SIPs have been incorporated into amphiphilic block copolymers and used to prepare nanoassemblies. However, stimuli‐responsive hydrophilic blocks have not previously been incorporated. In this work, we synthesized amphiphilic copolymers composed of a hydrophobic polycarbamate SIP block and a hydrophilic poly(2‐(dimethylamino)ethyl methacrylate) (PDMAEMA) block connected by a UV light‐responsive linker end‐cap. It was hypothesized that after assembly of the block copolymers into nanoparticles, chain collapse of the PDMAEMA above its lower critical solution temperature (LCST) might change the environment of the SIP block, thereby altering its depolymerization rate. Self‐assembly of the block copolymers was performed, and the depolymerization of the resulting assemblies was studied by fluorescence spectroscopy, dynamic light scattering, and NMR spectroscopy. At 20 °C, the system exhibited a selective response to the UV light. At 65 °C, above the LCST of PDMAEMA, the systems underwent more rapid depolymerization, suggesting that the increase in rate arising from the higher temperature dominated over environmental effects arising from chain collapse. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1868–1877  相似文献   

6.
7.
We report the synthesis and gradient stimuli‐responsive properties of cyclodextrin‐overhanging hyperbranched core‐double‐shell miktoarm architectures. A ionic hyperbranched poly(β‐cyclodextrin) (β‐CD) core was firstly synthesized via a convenient “A2+B3” approach. Double‐layered shell architectures, composed of poly(N‐isopropyl acrylamide) (PNIPAm) and poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) miktoarms as the outermost shell linked to poly(N,N‐diethylaminoethyl methacrylate) (PDEAEMA) homoarms which form the inner shell, were obtained by a sequential atom transfer radical polymerization (ATRP) and parallel click chemistry from the modified hyperbranched poly(β‐CD) macroinitiator. The combined characterization by 1H NMR, 13C NMR, 1H‐29Si heteronuclear multiple‐bond correlation (HMBC), FTIR and size exclusion chromatography/multiangle laser light scattering (SEC/MALLS) confirms the remarkable hyperbranched poly(β‐CD) core and double‐shell miktoarm architectures. The gradient triple‐stimuli‐responsive properties of hyperbranched core‐double‐shell miktoarm architectures and the corresponding mechanisms were investigated by UV–vis spectrophotometer and dynamic light scattering (DLS). Results show that this polymer possesses three‐stage phase transition behaviors. The first‐stage phase transition comes from the deprotonation of PDEAEMA segments at pH 9–10 aqueous solution under room temperature. The confined coil‐globule conformation transition of PNIPAm and PDMAEMA arms gives rise to the second‐stage hysteretic cophase transition between 38 and 44 °C at pH 10. The third‐stage phase transition occurs above 44 °C at pH = 10 attributed to the confined secondary conformation transition of partial PDMAEMA segments. This cyclodextrin‐overhanging hyperbranched core‐double‐shell miktoarm architectures are expected to solve the problems of inadequate functionalities from core layer and lacking multiresponsiveness for shell layers existing in the dendritic core‐multishell architectures. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
A systematic comparison between the grafting‐to (convergent) and grafting‐from (divergent) synthetic routes leading to cyclic peptide–polymer conjugates is described. The reversible addition–fragmentation chain transfer (RAFT) process was used to control the polymerizations and the couplings between cyclic peptide and polymer or RAFT agent were performed using N‐hydroxysuccinimide (NHS) active ester ligation. The kinetics of polymerization and polymer conjugation to cyclic peptides were studied for both grafting‐to and grafting‐from synthetic routes, using N‐acryloyl morpholine as a model monomer. The cyclic peptide chain transfer agent was able to mediate polymerization as efficiently as a traditional RAFT agent, reaching high conversion in the same time scale while maintaining excellent control over the molecular weight distribution. The conjugation of polymers to cyclic peptides proceeded to high conversion, and the nature of the carbon at the α‐position to the NHS group was found to play a crucial role in the reaction kinetics. The study was extended to a wider range of monomers, including hydrophilic and temperature responsive acrylamides, hydrophilic and hydrophobic acrylates, and hydrophobic and pH responsive methacrylates. Both approaches lead to similar peptide–polymer conjugates in most cases, while some exceptions highlight the advantages of one or the other method, thereby demonstrating their complementarity. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1003–1011  相似文献   

9.
New diene and dithiol monomers, based on aromatic imides such as benzophenone‐3,3′,4,4′‐tetracarboxylic diimide were synthesized and used in thiol‐ene polymerizations which yield poly(imide‐co‐thioether)s. These linear polymers exhibit limited solubility in various organic solvents. The molecular weights of the polymers were found to decrease with increasing imide content. The glass transition temperature (Tg) of these polymers is dependent on imide content, with Tg values ranging from ?55 °C (with no imide) up to 13 °C (with 70% imide). These thermal property improvements are due to the H‐bonding and rigidity of the aromatic imide moieties. Thermal degradation, as studied by thermogravimetric analysis, was not significantly different to the nonimide containing thiol‐ene polymers made using trimethyloylpropane diallyl ether and 3,5‐dioxa‐1,8‐dithiooctane. It is expected that such monomers may lead to increased glass transition temperatures in other thiol‐ene polymer systems as these normally exhibit low glass transition temperatures. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4637–4642  相似文献   

10.
A series of poly(N‐isopropylacrylamide)‐co‐poly(Nε‐benzyloxycarbonyl‐L ‐lysine) graft copolymers (PNIPAm‐co‐PZLLys) with different side chains (degree of polymerization, DP = 5~40) and unit ratios (from 30 to 70 mol %) were prepared via free radical polymerization, followed by cleaving benzyloxycarbonyl groups (Z groups) to obtain the double hydrophilic graft copolymer, poly(N‐isopropylacrylamide)‐co‐poly(L ‐lysine) (PNIPAm‐co‐PLLys). The pH‐ and temperature‐response properties of the graft copolymers in aqueous solution were studied. The experimental results indicate L15‐N30 and L15N‐70, that is, the PNIPAm‐co‐PLLys having the poly(L ‐lysine) of DP = 15 as side chains as well as 30 and 70 mol %, respectively, of PNIPAm as backbone, have coil‐to‐helix transitions from pH 6 to pH 12 at room temperature and form uniform nanoscale micelle‐like dispersions in aqueous solution at pH 12. The graft copolymers also could form uniform and nanoscale micelle‐like structures at 50 °C in pH 6 buffer solution due to slightly polymer aggregation. With temperature and pH increased, both the deprotonated PLLys side chains and PNIPAm backbone become hydrophobic, leading to polymer precipitation. These results illustrate that a double tunable hydrophilic graft copolymer had been successfully synthesized via a simple radical polymerization, and could form micelles without serious polymer aggregation at a lower pH and a higher temperature. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
The influence of solid‐state microstructure on the optoelectronic properties of conjugated polymers is widely recognized, but still poorly understood. Here, we show how the microstructure of conjugated polymers controls the yield and decay dynamics of long‐lived photogenerated charge in neat films. Poly(3‐hexylthiophene) was used as a model system. By varying the molecular weight, we drive a transition in the polymer microstructure from nonentangled, chain‐extended, paraffinic‐like to entangled, semicrystalline (MW = 5.5–347 kg/mol). The molecular weight range at which this transition occurs (MW = 40–50 kg/mol) can be deduced from the drastic change in elongation at break found in tensile tests. Linear absorption measurements of free‐exciton bandwidth and time‐resolved microwave conductivity (TRMC) measurements of transient photoconductance track the concomitant evolution in optoelectronic properties of the polymer as a function of MW. TRMC measurements show that the yield of free photogenerated charge increases with increasing molecular weight in the paraffinic regime and saturates at the transition into the entangled, semicrystalline regime. This transition in carrier yield correlates with a sharp transition in free‐exciton bandwidth and decay dynamics at a similar molecular weight. We propose that the transition in microstructure controls the yield and decay dynamics of long‐lived photogenerated charge. The evolution of a semicrystalline structure with well‐defined interfaces between amorphous and crystalline domains of the polymer is required for spatial separation of the electron and hole. This structural characteristic not only largely controls the yield of free charges, but also serves as a recombination center, where mobile holes encounter a bath of dark electrons resident in the amorphous phase and recombine with quasi first‐order kinetics. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

12.
A series of poly(N‐isopropylacrylamide‐coN‐hydroxymethylacrylamide) P(NIPAM‐co‐NHMA) copolymers were firstly synthesized via free radical polymerization. Then, the hydrophobic, photosensitive 2‐diazo‐1,2‐naphthoquinone (DNQ) molecules were partially and randomly grafted onto P(NIPAM‐co‐NHMA) backbone through esterification to obtain a triple‐stimuli (photo/pH/thermo) responsive copolymers of P(NIPAM‐co‐NHMA‐co‐DNQMA). UV‐vis spectra showed that the lower critical solution temperature (LCST) of P(NIPAM‐co‐NHMA) ascended with increasing hydrophilic comonomer NHMA molar fraction and can be tailored by pH variation as well. The LCST of the P(NIPAM‐co‐NHMA) went down firstly after DNQ modification and subsequently shifted to higher value after UV irradiation. Meanwhile, the phase transition profile of P(NIPAM‐co‐NHMA‐co‐DNQMA) could be triggered by pH and UV light as expected. Thus, a triple‐stimuli responsive copolymer whose solution properties could be, respectively, modulated by temperature, light, and pH, has been achieved. These stimuli‐responsive properties should be very important for controlled release delivery system. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2763–2773, 2009  相似文献   

13.
Chain‐end free volume theory is extended for studying the glass‐transition temperature (Tg) as a function of conversion in hyperbranched polymers. Tg is found to have a non‐linear inverse relationship to the molecular weight for polymers obtained by self‐condensing vinyl polymerization (SCVP). During the monomer conversion process, Tg decreases with the increase in molecular weight (P) in the low conversion range, then levels off in the high conversion range.  相似文献   

14.
A series of OEGylated poly(γ‐benzyl‐l ‐glutamate) with different oligo‐ethylene‐glycol side‐chain length, molecular weight (MW = 8.4 × 103 to 13.5 × 104) and narrow molecular weight distribution (PDI = 1.12–1.19) can be readily prepared from triethylamine initiated ring‐opening polymerization of OEGylated γ‐benzyl‐l ‐glutamic acid based N‐carboxyanhydride. FTIR analysis revealed that the polymers adopted α‐helical conformation in the solid‐state. While they showed poor solubility in water, they exhibited a reversible upper critical solution temperature (UCST)‐type phase behavior in various alcoholic organic solvents (i.e., methanol, ethanol, 1‐propanol, 1‐butanol, 1‐pentanol, and isopropanol). Variable‐temperature UV–vis analysis revealed that the UCST‐type transition temperatures (Tpts) of the resulting polymers were highly dependent on the type of solvent, polymer concentration, side‐ and main‐chain length. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1348‐1356  相似文献   

15.
We reported a new way to synthesize single‐chain white light‐emitting polyfluorene (WPF) with an increased molecular weight using azide‐alkyne click reaction. Four basic polymers with specific end‐capping, which exhibited high‐glass transition temperatures (Tg > 100 °C) and excellent thermal stability, were used as foundations of the WPF's synthesis; a blue‐light polymer (PFB2) end‐capped with azide groups can easily react with acetylene end‐capped polymers (PFB1, PFG1, and PFR1, which are emitting blue‐, green‐ and red‐light, respectively) to form triazole‐ring linkages in polar solvents such as N,N‐dimethylforamide/toluene co‐solvent at moderate temperature of 100 °C, even without metal‐catalyst. Several WPFs that consist of these four basic polymers in certain ratios were derived, and the polymer light‐emitting diode device based on the high‐molecular weight WPF was achieved and demonstrated a maximum brightness of 7551 cd/m2 (at 12.5 V) and a maximum yield of 5.5 cd/A with Commission Internationale de l'Eclairage coordinates of (0.30, 0.33) using fine‐tuned WPF5 as emitting material. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
Two LC side‐group poly(methacrylates) were synthesized, and their melt dynamics were compared with each other and a third, main‐chain side‐group combined LC polymer. A new route was developed for the synthesis of the poly(methacrylate) polymers which readily converts relatively inexpensive perdeuteromethyl methacrylate to other methacrylate monomers. Self‐diffusion data was obtained through the use of forward recoil spectrometry, while modulus and viscosity data were measured using rotational rheometers in oscillatory shear. Diffusion coefficients and complex viscosity were compared to previous experiments on liquid crystal polymers of similar architecture to determine the effect of side‐group interdigitation and chain packing on center of mass movement. The decyl terminated LC side‐group polymer possessed an interdigitated smectic phase and a sharp discontinuity in the self‐diffusion behavior at the clearing transition. In contrast, the self‐diffusion behavior of the methyl terminated LC side‐group polymer, which possessed head‐to‐head side‐group packing, was seemingly unaffected by the smectic–nematic and nematic–isotropic phase transitions. The self‐diffusion coefficients of both polymers were relatively insensitive to the apparent glass transition. The presence of moderately fast sub‐Tg chain motion was supported by rheological measurements that provided further evidence of considerable molecular motion below Tg. The complex phase behavior of the combined main‐chain side‐group polymer heavily influenced both the self‐diffusion and rheological behavior. Differences between the self‐diffusion and viscosity data of the main‐chain side‐group polymer could be interpreted in terms of the defect structure. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 405–414, 1999  相似文献   

17.
A hetero‐arm star polymer, poly(ethylene glycol)‐poly(N‐isopropylacrylamide)‐poly(L‐lysine) (PEG‐PNIPAM‐PLys), was synthesized by “clicking” the azide group at the junction of PEG‐b‐PNIPAM diblock copolymer with the alkyne end‐group of poly(L‐lysine) (PLys) homopolymer via 1,3‐dipolar cycloaddition. The resultant polymer was characterized by gel permeation chromatography, proton nuclear magnetic resonance, and Fourier transform infrared spectroscopes. Surprisingly, the PNIPAM arm of this hetero‐arm star polymer nearly lose its thermal responsibility. It is found that stable polyelectrolyte complex micelles are formed when mixing the synthesized polymer with poly(acrylic acid) (PAA) in water. The resultant polyelectrolyte complex micelles are core‐shell spheres with the ion‐bonded PLys/PAA chains as core and the PEG and PNIPAM chains as shell. The PNIPAM shell is, as expected, thermally responsive. However, its lower critical solution temperature is shifted to 37.5 °C, presumably because of the existence of hydrophilic components in the micelles. Such star‐like PEG‐PNIPAM‐PLys polymer with different functional arms as well as its complexation with anionic polymers provides an excellent and well‐defined model for the design of nonviral vectors to deliver DNA, RNA, and anionic molecular medicines. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1450–1462, 2009  相似文献   

18.
Environmental switches may be fabricated for the controlled release of pharmaceutical drug using a thermally responsive polymer with the intrinsic chemical and physical nature of stimuli‐sensitive smart materials. Particularly, much attention has been paid to the biomedical applications of poly(N‐isopropyl acrylamide) (PNIPAAm) because of its unique reversible transition at a specific lower critical solution temperature (LCST).Thermally sensitive block copolymers, poly(N‐isopropyl acrylamide‐b‐poly(L ‐lactide‐co‐glycolide) (PNIPAAm‐b‐PLGA), and polyethylene glycol‐poly (lactide‐co‐glycolide) (PEG‐PLGA) triblock copolymers with different compositions and length of PLGA block were synthesized via ring‐opening polymerization of lactide and glycolide in the presence of OH‐terminated PNIPAAm or PEG. The composition and structure of the polymer were determined by NMR and FTIR. The effect of important factors, such as ionic strength, pH, and polymer concentration on the phase transition behavior of temperature‐sensitive polymers, were investigated by cloud point measurements. The resulting thermosensitive polymers were used for the entrapment of a narcotic antagonist drug, naltrexone, as the model drug. The loading efficiency and drug release behavior of naltrexone‐loaded hydrogels were investigated. The naltrexone loaded thermosensitive polymers were able to sustain the release of naltrexone for different periods of time, depending on the polymer composition, and concentration. In vitro release studies showed that these thermosensitive polymers are able to deliver naltrexone in biologically active forms at a controlled rate for 3–8 weeks. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A reaction of the P‐chiral compound (S,S)‐1,2‐bis(boranato(tert‐butyl)methylphosphino)ethane with an azobenzene derivative gave stimuli‐responsive polymers with P‐chiral phosphines in the main chain. This is the first example of a stimuli‐responsive P‐chiral polymer. The polymer isomerized from the trans to the cis form upon UV irradiation and reverted to the trans form reversibly. The polymer was able to coordinate to platinum, and the resulting polymer complex exhibited the Cotton effect owing to the chirality of the phosphorus atoms. The structure of the P‐chiral polymer obtained could be changed reversibly by light and thermal stimuli, and the polymer chain was induced to rotate helically when complexed with transition metals through the chiral phosphorus atoms.  相似文献   

20.
Phase transition and mobility of poly(N‐isopropylacrylamide) (PNIPA) chains with three different types of end groups (hydroxyl, carbon–carbon double bond, and camphoric sulfonic groups) have been studied by measurements of the normal 1H NMR spectrum, spin–spin relaxation time, and 2D NOESY spectrum. It is found that at room temperature not only the end group parts but also the part of the PNIPA chain with hydroxyl end group have higher mobility than corresponding parts of PNIPA with double bond and camphoric sulfonic end groups. The lower critical solution temperatures (LCST) of PNIPAs modified with hydrophilic hydroxyl and hydrophobic double bond end groups are inversely dependent and directly dependent on the molecular weight of polymer respectively, whereas the LCST of PNIPA with the camphoric sulfonic end group bearing both hydrophobic and hydrophilic structures is independent of the molecular weight. The double bond end groups collapse simultaneously with inner segments of the PNIPA chain, whereas the hydroxyl and camphoric sulfonic end groups still exhibit higher mobility and do not shrink tightly after heating‐induced collapsing of inner segments. It is suggested that the hydroxyl and camphoric sulfonic end groups locate on the surface of globules, but the double bond end groups are probably buried inside the globules. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号